-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathparser.py
182 lines (160 loc) · 10.7 KB
/
parser.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
import argparse
import yaml
def parse_args_train_multi():
# The first arg parser parses out only the --config argument, this argument is used to
# load a yaml file containing key-values that override the defaults for the main parser below
config_parser = parser = argparse.ArgumentParser(
description='Training Config', add_help=False)
parser.add_argument('-c', '--config', default='', type=str, metavar='FILE',
help='YAML config file specifying default arguments')
parser = argparse.ArgumentParser(
description='Multilabel K-fold cross validation')
parser.add_argument('--folder-name', type=str,
default='CVmulti', help='folder name')
# Dataset / Model parameters
parser.add_argument('--dataset', '-d', metavar='NAME', default='',
help='dataset type (default: ImageFolder/ImageTar if empty)')
parser.add_argument('--model', default='tv_resnet50', type=str, metavar='MODEL',
help='efficientnetv2_m or tv_resnet50')
parser.add_argument('--freeze', action='store_true', default=False,
help='freeze top layers')
parser.add_argument('-b', '--batch-size', type=int, default=32, metavar='N',
help='input batch size for training (default: 32)')
parser.add_argument('--lr', type=float, default=0.01, metavar='LR',
help='learning rate (default: 0.01)')
parser.add_argument('--epochs', type=int, default=200, metavar='N',
help='number of epochs to train (default: 2)')
parser.add_argument('--eval-metric', type=str, default="acc",
help='evaluation metric = loss, acc')
parser.add_argument('--checkpoint-hist', type=int, default=10, metavar='N',
help='number of checkpoints to keep (default: 10)')
parser.add_argument('--output', default='', type=str, metavar='PATH',
help='path to root output folder (default: none, current dir)')
parser.add_argument('--initial-checkpoint', default='', type=str, metavar='PATH',
help='Initialize model from this checkpoint (default: none)')
parser.add_argument('--pretrain-num-classes', type=int, default=2, metavar='N',
help='number of label classes of the pretrain model (Model default if None)')
# preprocessing options
parser.add_argument('--transparent2white','-t2w', action='store_true', default=False,
help='creating white background for image with transparency ')
parser.add_argument('--color2grayscale','-c2g', action='store_true', default=False,
help='convert all colour images to grayscale')
parser.add_argument('--mean', type=list, nargs='+', default=[0.9852, 0.9852, 0.9852], metavar='MEAN',
help='Override mean pixel value of dataset')
parser.add_argument('--std', type=list, nargs='+', default=[0.1079, 0.1079, 0.1079], metavar='STD',
help='Override std deviation of of dataset')
# augmentation options
parser.add_argument('--aug', action='store_true', default=False,
help='augment all labels')
# Formulated Imbalanced Dataset Sampler parameters
parser.add_argument('--min-perct', type=float, default=0, metavar='N',
help='percentage threshold to be considered as minority label combination')
parser.add_argument('--add-perct', type=float, default=0, metavar='N',
help='potential percentage of minority label combination to be added to dataset')
parser.add_argument('--maxI', type=int, default=0, metavar='N',
help='maximum images that can be added per instance')
args_config, remaining = config_parser.parse_known_args()
if args_config.config:
with open(args_config.config, 'r') as f:
cfg = yaml.safe_load(f)
parser.set_defaults(**cfg)
# The main arg parser parses the rest of the args, the usual
# defaults will have been overridden if config file specified.
args = parser.parse_args(remaining)
# Cache the args as a text string to save them in the output dir later
args_text = yaml.safe_dump(args.__dict__, default_flow_style=False)
return args, args_text
def parse_args_infer():
# The first arg parser parses out only the --config argument, this argument is used to
# load a yaml file containing key-values that override the defaults for the main parser below
config_parser = parser = argparse.ArgumentParser(
description='Infer Config', add_help=False)
parser.add_argument('-c', '--config', default='', type=str, metavar='FILE',
help='YAML config file specifying default arguments')
parser = argparse.ArgumentParser(
description='Multilabel K-fold cross validation Infer')
# Dataset / Model parameters
parser.add_argument('--dataset', '-d', metavar='NAME', default='',
help='dataset type (default: ImageFolder/ImageTar if empty)')
parser.add_argument('--model', default='tv_resnet50', type=str, metavar='MODEL',
help='efficientnetv2_m or tv_resnet50')
parser.add_argument('--checkpoint-dir', default='', type=str, metavar='PATH',
help='path to dir containing cross validation folders which in turn contain checkpoint')
# preprocessing options
parser.add_argument('--transparent2white','-t2w', action='store_true', default=False,
help='creating white background for image with transparency ')
parser.add_argument('--color2grayscale','-c2g', action='store_true', default=False,
help='convert all colour images to grayscale')
parser.add_argument('--mean', type=list, nargs='+', default=[0.9852, 0.9852, 0.9852], metavar='MEAN',
help='Override mean pixel value of dataset')
parser.add_argument('--std', type=list, nargs='+', default=[0.1079, 0.1079, 0.1079], metavar='STD',
help='Override std deviation of of dataset')
parser.add_argument("--gradfile", type=list, nargs="+", default=[''],
help="gradcam output for list of filenames e.g. ['N_24_5.png','N_12_6.png']")
args_config, remaining = config_parser.parse_known_args()
if args_config.config:
with open(args_config.config, 'r') as f:
cfg = yaml.safe_load(f)
parser.set_defaults(**cfg)
# The main arg parser parses the rest of the args, the usual
# defaults will have been overridden if config file specified.
args = parser.parse_args(remaining)
# Cache the args as a text string to save them in the output dir later
args_text = yaml.safe_dump(args.__dict__, default_flow_style=False)
return args, args_text
def parse_args_train_binary():
# The first arg parser parses out only the --config argument, this argument is used to
# load a yaml file containing key-values that override the defaults for the main parser below
config_parser = parser = argparse.ArgumentParser(
description='Training Config', add_help=False)
parser.add_argument('-c', '--config', default='', type=str, metavar='FILE',
help='YAML config file specifying default arguments')
parser = argparse.ArgumentParser(
description='Binary K-fold cross validation')
parser.add_argument('--folder-name', type=str,
default='CVbin', help='folder name')
# Dataset / Model parameters
parser.add_argument('--dataset', '-d', metavar='NAME', default='',
help='dataset type (default: ImageFolder/ImageTar if empty)')
parser.add_argument('--model', default='tv_resnet50', type=str, metavar='MODEL',
help='efficientnetv2_m or tv_resnet50')
parser.add_argument('--freeze', action='store_true', default=True,
help='freeze top layers')
parser.add_argument('-b', '--batch-size', type=int, default=32, metavar='N',
help='input batch size for training (default: 32)')
parser.add_argument('--lr', type=float, default=0.01, metavar='LR',
help='learning rate (default: 0.01)')
parser.add_argument('--epochs', type=int, default=200, metavar='N',
help='number of epochs to train (default: 2)')
parser.add_argument('--eval-metric', type=str, default="top1",
help='evaluation metric = loss, top1')
parser.add_argument('--checkpoint-hist', type=int, default=10, metavar='N',
help='number of checkpoints to keep (default: 10)')
parser.add_argument('--output', default='', type=str, metavar='PATH',
help='path to root output folder (default: none, current dir)')
parser.add_argument('--initial-checkpoint', default='', type=str, metavar='PATH',
help='Initialize model from this checkpoint (default: none)')
parser.add_argument('--pretrain-num-classes', type=int, default=2, metavar='N',
help='number of label classes of the pretrain model (Model default if None)')
parser.add_argument('--num-classes', type=int, default=2, metavar='N',
help='number of label classes of the pretrain model (Model default if None)')
# preprocessing options
parser.add_argument('--transparent2white','-t2w', action='store_true', default=False,
help='creating white background for image with transparency ')
parser.add_argument('--color2grayscale','-c2g', action='store_true', default=False,
help='convert all colour images to grayscale')
parser.add_argument('--mean', type=list, nargs='+', default=[0.9852, 0.9852, 0.9852], metavar='MEAN',
help='Override mean pixel value of dataset')
parser.add_argument('--std', type=list, nargs='+', default=[0.1079, 0.1079, 0.1079], metavar='STD',
help='Override std deviation of of dataset')
args_config, remaining = config_parser.parse_known_args()
if args_config.config:
with open(args_config.config, 'r') as f:
cfg = yaml.safe_load(f)
parser.set_defaults(**cfg)
# The main arg parser parses the rest of the args, the usual
# defaults will have been overridden if config file specified.
args = parser.parse_args(remaining)
# Cache the args as a text string to save them in the output dir later
args_text = yaml.safe_dump(args.__dict__, default_flow_style=False)
return args, args_text