forked from pytorch/pytorch
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathGatedLinearUnit.cu
38 lines (34 loc) · 1.33 KB
/
GatedLinearUnit.cu
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
#include <THCUNN/THCUNN.h>
#include <TH/THHalf.h>
#include <THC/THCNumerics.cuh>
#include <THC/THCApply.cuh>
#include <THCUNN/common.h>
#include <ATen/WrapDimUtils.h>
template <typename Dtype, typename Acctype>
struct gatedLinearCSigMul_functor
{
__device__ void operator()(Dtype *target, const Dtype *sigTensor, const Dtype *mulTensor) const
{
const Acctype sigNum = Acctype(1)/(Acctype(1)+ exp(ScalarConvert<Dtype, Acctype>::to(-*sigTensor)));
const Dtype mulNum = *mulTensor;
*target = ScalarConvert<Acctype, Dtype>::to(sigNum * mulNum);
}
};
template<typename Dtype, typename Acctype>
struct gatedLinearDerivative
{
const int64_t stride_i_;
const int64_t stride_gI_;
gatedLinearDerivative(int64_t stride_i, int64_t stride_gI)
:stride_i_(stride_i), stride_gI_(stride_gI){}
__device__ void operator()(Dtype * gI, const Dtype * gO, const Dtype * input) const
{
const Dtype * sigTensor = input + stride_i_;
const Acctype sigNum = Acctype(1)/(Acctype(1)+ exp(ScalarConvert<Dtype, Acctype>::to(-*sigTensor)));
*gI = ScalarConvert<Acctype, Dtype>::to(sigNum * *gO);
Dtype * gIsecond = gI + stride_gI_;
*gIsecond = ScalarConvert<Acctype, Dtype>::to((Acctype(1) - sigNum) * sigNum * *gO * *input);
}
};
#include <THCUNN/generic/GatedLinearUnit.cu>
#include <THC/THCGenerateFloatTypes.h>