-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy path20140514-MatrixFree.tex
285 lines (273 loc) · 16.8 KB
/
20140514-MatrixFree.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
\documentclass[final,t]{beamer}
\mode<presentation>
{
\usetheme{MCSposter}
\usecolortheme{default}
\usefonttheme[onlymath]{serif}
}
\usepackage[orientation=portrait,size=custom,width=76.2,height=101.6]{beamerposter}
%\usepackage[orientation=landscape,size=a0,scale=1.4]{beamerposter}
\usepackage{pgfpages}
%\pgfpagesuselayout{resize to}[a4paper,landscape,border shrink=5mm]
%\pgfpagesuselayout{resize to}[a0paper,landscape]
% additional settings
\setbeamerfont{itemize}{size=\normalsize}
\setbeamerfont{itemize/enumerate body}{size=\normalsize}
\setbeamerfont{itemize/enumerate subbody}{size=\normalsize}
\setbeamertemplate{caption}[numbered]
% additional packages
\usepackage{times}
\usepackage{textpos}
\usepackage{wrapfig}
\usepackage{sidecap}
%\usepackage{sfmath}
\usepackage{amsmath,amsthm,bm,microtype}
\usepackage{siunitx}
\DeclareSIUnit\year{a}
\sisetup{retain-unity-mantissa = false}
\usepackage{exscale}
\usepackage{multicol,multirow}
\usepackage{booktabs}
%\usepackage[english]{babel}
\usepackage[latin1]{inputenc}
\newcommand\todo[1]{{\color{red}\bf [TODO: #1]}}
\usepackage{tikz}
\usetikzlibrary{decorations.pathreplacing}
\usetikzlibrary{shadows,arrows,shapes.misc,shapes.arrows,shapes.multipart,arrows,decorations.pathmorphing,backgrounds,positioning,fit,petri,calc,shadows,chains,matrix}
\usepackage{fancyvrb}
\newcommand\cverb[1][]{\SaveVerb[%
aftersave={\textnormal{\UseVerb[#1]{vsave}}}]{vsave}}
\bibliographystyle{unsrt-shortauthor}
%\def\newblock{\hskip .11em plus .33em minus .07em} % for natbib and beamer IMPORTANT
\listfiles
\graphicspath{{/home/jed/talks/figures/}{/home/jed/src/aterrel-presentations/figures/}}
% Display a grid to help align images
%\beamertemplategridbackground[1cm]
\newcommand\jedcolor[1]{{}}
\title{\huge High-performance matrix-free \\ operator application and preconditioning}
\author[Jed Brown]{Jed Brown (ANL and CU) {\texttt{[email protected]}}\\
Dave May (ETH Z\"urich) {\texttt{[email protected]}}\\
Matt Knepley (UChicago) {\texttt{[email protected]}}}
\institute[MCS]{Download this poster from \url{http://59A2.org/files/201405-MatrixFree.pdf}}
\newcommand{\newt}[1]{\tilde{#1}}
\newcommand{\btab}{\hspace{\stretch{1}}}
\newcommand{\C}{\mathbb{C}}
\newcommand{\N}{\mathbb{N}}
\newcommand{\Q}{\mathbb{Q}}
\newcommand{\R}{\mathbb{R}}
\newcommand{\Rz}{\mathcal{R}}
\newcommand{\RR}{{\bar{\mathbb{R}}}}
\newcommand{\II}{\mathcal{I}}
\newcommand{\Z}{\mathbb{Z}}
\newcommand{\Zp}{\mathbb{Z}_+}
\newcommand{\B}{\mathcal{B}}
\newcommand{\M}{\mathcal{M}}
\newcommand{\LL}{\mathcal{L}}
\newcommand{\PP}{\mathscr{P}}
\newcommand{\ff}{\bm f}
\newcommand{\uu}{\bm u}
\newcommand{\vv}{\bm v}
\newcommand{\ww}{\bm w}
\newcommand{\DD}{D}
\newcommand{\EE}{\mathcal E}
\newcommand{\VV}{\bm{\mathcal{V}}}
\newcommand{\Pspace}{\mathcal{P}}
\newcommand\pfrak{{\mathfrak p}}
\newcommand{\di}{\partial}
\newcommand{\bigO}{\mathcal{O}}
\newcommand{\abs}[1]{\left\lvert #1 \right\rvert}
\newcommand{\bigabs}[1]{\big\lvert #1 \big\rvert}
\newcommand{\norm}[1]{\left\lVert #1 \right\rVert}
\newcommand{\ceil}[1]{\left\lceil #1 \right\rceil}
\newcommand{\floor}[1]{\left\lfloor #1 \right\rfloor}
\newcommand{\dif}{\bigtriangleup}
\newcommand{\ud}{\,\mathrm{d}}
\newcommand{\tcolon}{\!:\!}
\DeclareMathOperator{\sgn}{sgn}
\DeclareMathOperator{\card}{card}
\DeclareMathOperator{\trace}{tr}
\DeclareMathOperator{\sspan}{span}
\renewcommand{\bar}{\overline}
\newcommand{\ed}{\dot{\epsilon}}
\newcommand\citet[1]{\cite{#1}}
\newcommand\citep[1]{\cite{#1}}
% abbreviations
\usepackage{xspace}
\makeatletter
\DeclareRobustCommand\onedot{\futurelet\@let@token\@onedot}
\def\@onedot{\ifx\@let@token.\else.\null\fi\xspace}
\def\eg{{e.g}\onedot} \def\Eg{{E.g}\onedot}
\def\ie{{i.e}\onedot} \def\Ie{{I.e}\onedot}
\def\cf{{c.f}\onedot} \def\Cf{{C.f}\onedot}
\def\etc{{etc}\onedot}
\def\vs{{vs}\onedot}
\def\wrt{w.r.t\onedot}
\def\dof{d.o.f\onedot}
\def\etal{{et al}\onedot}
\makeatother
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\begin{document}
\begin{frame}{}
\vspace{-3em}
\begin{columns}
\begin{column}{0.48\textwidth}
\begin{block}{Don't assemble}
The purpose of a solver is to solve equations.
Assembly is a necessary evil only for those legacy algorithms that depend on assembled sparse matrices.
The comfortable abstraction from a bygone era is now a performance bottleneck with teeth on both ends.
Ignoring the time and memory cost to assemble a matrix, it can take longer to compute a residual using an assembled operator than to solve up to discretization error with a fast matrix-free method.
\end{block}
\vspace{-2.2em}
\begin{block}{Sparse matrices are bad for hardware}
Once assembled, matrices suffer from low arithmetic intensity, performing less than 1/4 flop for each byte of memory loaded into cache.
\begin{table}
\caption{Bandwidth and compute balance for modern hardware.}
\begin{tabular}{lrrr}
\toprule
Processor & STREAM (GB/s) & Peak (GF/s) & Balance (F/B) \\
\midrule
% E5-2680 8-core & 38 & 173 & 4.5 \\ % http://www.cs.virginia.edu/stream/stream_mail/2013/0001.html
E5-2695v2 12-core & 45 & 230 & 5.2 \\ % Edison 460 GF and 89 GB/s
% Magny Cours 16-core & 49 & 281 & 5.7 \\
BG/Q 16-core & 26 & 205 & 7.9 \\
% Tesla M2090 & 120 & 665 & 5.5 \\
Kepler K20Xm & 160 & 1310 & 8.2 \\ % http://www.elekslabs.com/2012/11/nvidia-tesla-k20-benchmark-facts.html
Xeon Phi SE10P & 161 & 1060 & 6.6 \\ % http://www.cs.virginia.edu/stream/stream_mail/2013/0002.html
% http://blogs.utexas.edu/jdm4372/tag/xeon-phi/
\bottomrule
\end{tabular}
\end{table}
A lower-memory representation using more flops would use hardware more efficiently.
\begin{figure}
\centering
\includegraphics[width=.7\textwidth]{figures/TensorVsAssembly}
\caption{Cost per dof to apply an assembled matrix vs matrix-free tensor product for $Q_k$ discretization in 3D.
The operator defined as Newton linearization of nonlinear material model, stored at quadrature points.
Unassembled uses hardware more efficiently and is asymptotically better for high polynomial order and for large block size $b$.}\label{fig:tensorvsassembly}
\end{figure}
Coefficients often have structure imparted by a material model.
For example, a scalar nonlinear diffusion operator $-\nabla\cdot\Big[\kappa\big(\frac 1 2 \abs{\nabla u}^2\big),\nabla u\Big]$ has Newton linearization $-\nabla\cdot\Big[(\kappa\bm 1 + \kappa' \nabla u \otimes \nabla u) \nabla w\Big]$ so it is sufficient to store the 4 values $\{\kappa, \sqrt{\pm \kappa'}\nabla u\}$ so long as $\kappa'$ does not change sign~\cite{brown2010ens}.
\end{block}
\vspace{-2.2em}
\begin{block}{$10\times$ speedup for $Q_2$ elements (Stokes or elasticity)}
We know analytically (Figure \ref{fig:tensorvsassembly}) that unassembled wins for sufficiently high order, but what are the constants for a practical implementation?
We consider operator application for a variable-viscosity Stokes problem on $Q_2$-isoparametrically mapped grids.
\begin{table}
\centering\caption{Memory and compute demands per element for different operator application methods.
Arithmetic intensity is reported as flops/byte, counting adds, multiplies, and division (rare) all as 1 flop.
``Tensor'' is a matrix-free implementation that uses the tensor product structure present on the reference element.
``Tensor C'' absorbs the metric terms into a tensor-valued coefficient.
Average time (milliseconds) and GF/s is reported for (parallel) operator application on 8 nodes of Edison (3686 GF/s peak).
}\label{tab:intensity}
\begin{tabular}{lrrrrrrr}
\toprule
Operator & flops & \multicolumn{2}{c}{Pessimal cache} & \multicolumn{2}{c}{Perfect cache} & Time & GF/s \\
& & bytes & F/B & bytes & F/B & (ms) & \\
\midrule
Assembled & 9216 & --- & --- & 37248 & 0.247 & 42 & 113 \\
Matrix-free & 53622 & 2376 & 22.5 & 1008 & 53 & 22 & 651 \\
Tensor & 15228 & 2376 & 6.4 & 1008 & 15 & 4.2 & 1072 \\
Tensor C & 14214 & 5832 & 2.4 & 4920 & 2.9 & --- & --- \\
\bottomrule
\end{tabular}
% edison-8sinker-64-asm-00192.log:MGResid Level 2 247 1.0 1.0271e+01 1.1 6.50e+09 1.2 8.2e+05 8.3e+03 0.0e+00 10 8 3 7 0 13 14 4 11 0 112942
% edison-8sinker-64-avx-00192.log:MGResid Level 2 247 1.0 1.0430e+00 1.0 6.01e+09 1.1 1.6e+06 5.5e+03 0.0e+00 3 7 5 9 0 6 14 6 12 0 1072558
% edison-8sinker-64-ref-00192.log:MGResid Level 2 247 1.0 5.4271e+00 1.0 1.90e+10 1.1 1.6e+06 5.5e+03 0.0e+00 8 12 5 9 0 12 15 6 12 0 651324
\end{table}
% To model the memory requirements, we have considered two cache models:
\begin{description}
\item[pessimal cache] Each $Q_2$ element must be retrieved independently from DRAM.
% Accurate for random element ordering or the limit of small cache sizes.
\item[perfect cache] Each dof must be brought into cache only once.
% all shared vertices are cache hits after the first time.
% Accurate for cache size at least as large as ``matrix bandwidth''.
\end{description}
\end{block}
\vspace{-2.2em}
\begin{block}{Cache versus vectorization}
Performance is limited by memory bandwidth (often with many memory streams), cache reuse, and vectorization.
Vectorization across elements does not require cross-lane operations, but increases working set size relative to intra-element vectorization.
Intra-element vectorization performs well at high order (usually $Q_3$ and higher), but the optimizations are more sensitive to polynomial order and number of fields.
Current trends of longer vector registers and more hardware threads per core (e.g., Xeon Phi, BG/Q, GPUs) effectively reduce the amount of cache available per vector lane.
To realize high performance on such architectures, we either need rich cross-lane vector instructions (and compilers capable of using them) or cache sizes commensurate with the number of vector lanes made available.
Cache and prefetch streams can be shared between hardware threads by interleaving thread responsibility, but a work-partition in FEM is not a dof-partition, so this technique causes overlapping writes.
Writes can be managed by coloring, partitioning with duplication of interface points (to be summed later), or atomics/locking.
Coloring has poor memory locality and the ``cache-friendly'' interleaved ordering is a pessimal partition (causing memory bloat for duplication and frequent conflicted writes for atomics/locking).
\end{block}
\end{column}
%
\begin{column}{0.48\textwidth}
\begin{block}{Matrix-free operator application}
Discretize $-\nabla \Big(\kappa \nabla\cdot u\Big)$, yielding
\begin{gather}\label{eq:mf-scalar}
A \mathbf u = \sum_{e \in \text{Elements}} \mathcal E_e^T \mathcal D_{\mathbf x}^T \Lambda(\omega \kappa) \mathcal D_{\mathbf x} \mathcal E_e \mathbf u
\end{gather}
The physical gradient matrix $\mathcal D_{\mathbf x} = \{\mathcal D_i | i \in \{x,y,z\} \}$ is an $81\times 27$ matrix for $Q_2$ elements in 3D using $3^3$-point Gauss quadrature.
In most finite-element implementations, the precomputed reference gradient matrix $\mathcal D_{\mathbf \xi}$ is mapped to physical space via the block-diagonal operation $\mathcal D_{\mathbf x} = \Lambda(\nabla_{\mathbf x}\mathbf\xi) \mathcal D_{\mathbf \xi}$.
This is wasteful; it is less expensive to rearrange as
\begin{equation}\label{eq:tensor}
A \mathbf u = \sum_{e \in \text{Elements}} \mathcal E_e^T \mathcal D_{\mathbf \xi}^T \Lambda\Big((\nabla_{\mathbf x}\mathbf\xi)^T (\omega \kappa) (\nabla_{\mathbf x}\mathbf\xi) \Big) \mathcal D_{\mathbf \xi} \mathcal E_e \mathbf u .
\end{equation}
where $\nabla_{\mathbf x}\mathbf\xi = (\nabla_{\mathbf\xi}\mathbf x)^{-1}$ is computed at quadrature points from the coordinate gradients.
In Table \ref{tab:intensity}, ``Matrix-free'' implements Equation \ref{eq:mf-scalar} in the traditional way, ``Tensor'' implements Equation \ref{eq:tensor} using
\begin{equation}
D_{\mathbf\xi} = \{\hat D \otimes \hat B \otimes \hat B, \hat B \otimes \hat D \otimes \hat B, \hat B \otimes \hat B \otimes \hat D \}
\end{equation}
where $\hat D$ and $\hat B$ are the $3\times 3$ differentiation and basis evaluation matrices for one dimension,
and ``Tensor C'' stores the tensor $(\nabla_{\mathbf x}\mathbf\xi)^T (\omega \kappa) (\nabla_{\mathbf x}\mathbf\xi)$ at quadrature points, trading storage for explicit handling of metric terms.
Tensor representations are standard for spectral element methods with collocated quadrature, but are rare for low-order FE with accurate quadrature.
\end{block}
\vspace{-2em}
\begin{block}{Assembly-free preconditioning}
Fast operator application is nearly useless without effective preconditioning.
Fortunately~\cite{Adams-02}, multigrid methods with polynomial smoothing are effective for many elliptic problems.
The end-to-end performance and memory benefit of matrix-free operator application is mostly realized on the finest level.
For most applications, there is little penalty to using existing matrix-based methods on coarse grids, even when not carefully optimized.
pTatin3D is a lithosphere dynamics package that simulates thermodynamics and other processes in visco-plastic quasi-incompressible materials using a material-point method to track post-failure composition.
A $P_1^{\text{disc}}$ pressure space is necessary for local conservation and to accurately represent the hydrostatic mode in the free-surface flows, thus a $Q_2$ velocity space is used to maintain uniform inf-sup stability.
Solving the Newton step for the nonlinear Stokes problem is the dominant cost, and is achieved using either block-triangular preconditioners (Table~\ref{tab:scalability}) or Schur-complement reduction.
\begin{table}
\centering\caption{pTatin3D efficiency for different problem and partition sizes on Edison.}\label{tab:scalability}
\begin{tabular}{l rrr rr r}
\toprule
Operator & Cores & Grid & El/core & \multicolumn{2}{c}{Solve/core} & Op/core \\
& & & & El/s & GF/s & kEl/s \\
\midrule
Assembled & 192 & $64^3$ & 1265 & 46 & 0.9 & 33 \\
Matrix-free & 192 & $64^3$ & 1265 & 69 & 2.6 & 62 \\
Tensor & 192 & $64^3$ & 1265 & 128 & 2.4 & 323 \\
Matrix-free & 1536 & $96^3$ & 576 & 47 & 2.2 & 60 \\
Tensor & 1536 & $96^3$ & 576 & 72 & 2.2 & 252 \\
Tensor & 12288 & $192^3$ & 576 & 26 & 1.1 & 166 \\
\bottomrule
\end{tabular}
\end{table}
For smooth problems, full multigrid is the method of choice.
HPGMG-FE (\url{https://hpgmg.org}) solves an elliptic problem using $Q_2$ elements on deformed meshes, reaching discretization error with one F-cycle using 3,1 Chebyshev smoothing.
Convergence thus requires 5 fine-grid operator applications, for a total of about 6 work units.
With the efficiency in Table~\ref{tab:intensity}, we see that the entire solve can be less expensive than a single residual evaluation using a pre-assembled matrix.
\begin{figure}
\centering
\includegraphics[width=0.6\textwidth]{figures/MG/hpgmgfe-edison-vesta.png}
\caption{HPGMG-FE FMG performance as a function of per-node problem size on 128 nodes of Edison (Cray XC-30; up to 23\% of peak) versus 512 nodes of Vesta (Blue Gene/Q; up to 6\% of peak).}\label{fig:hpgmg}
\end{figure}
\end{block}
\vspace{-2em}
\begin{block}{Outlook}
Cache versus vectorization is fundamental: tradeoffs vary with element order and numbers of degrees of freedom.
Research in robust matrix-free multigrid techniques are needed.
\end{block}
\vspace{-2em}
\begin{block}{References}
\scriptsize
% \nocite{brandt1994multigrid,bkmms2012}
\begin{minipage}{\textwidth}
\begin{multicols}{2}
\bibliography{$HOME/jedbib/jedbib,$PETSC_DIR/src/docs/tex/petsc,$PETSC_DIR/src/docs/tex/petscapp,$HOME/proposals/navy-sea-ice/seaice}
\end{multicols}
\end{minipage}
\end{block}
\end{column}
\end{columns}
\end{frame}
\end{document}