-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathcallback_func.py
48 lines (42 loc) · 1.38 KB
/
callback_func.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
"""
callbacks summary:
# usually used callback function
from keras.callbacks import ModelCheckpoint, LearningRateScheduler, EarlyStopping, TensorBoard
# other callback
from keras.callbacks import ProgbarLogger, RemoteMonitor, ReduceLROnPlateau, CSVLogger, LambdaCallback, TerminateOnNaN
# automatic used callbacks
from keras.callbacks import BaseLogger, History
# base call
from keras.callbacks import Callback
"""
from settings import epochs, lr_power
from keras.callbacks import Callback
class my_callback(Callback):
def on_train_begin(self, logs={}):
self.losses = []
def on_batch_end(self, batch, logs={}):
self.losses.append(logs.get('loss'))
def lr_scheduler(epoch, lr, mode='power_decay'):
"""
function for keras.callbacks.LearningRateScheduler
"""
if mode is 'power_decay':
# original lr scheduler
lr = lr * ((1 - float(epoch) / epochs) ** lr_power)
if mode is 'exp_decay':
# exponential decay
lr = (float(lr) ** float(lr_power)) ** float(epoch + 1)
# adam default lr
if mode is 'adam':
lr = 0.001
if mode is 'progressive_drops':
# drops as progression proceeds, good for sgd
if epoch > 0.9 * epochs:
lr = 0.0001
elif epoch > 0.75 * epochs:
lr = 0.001
elif epoch > 0.5 * epochs:
lr = 0.01
else:
lr = 0.1
return lr