-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathface_landmark.py
73 lines (59 loc) · 2.26 KB
/
face_landmark.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
import cv2
import dlib
import imutils
import numpy as np
detector = dlib.get_frontal_face_detector()
predictor = dlib.shape_predictor(r'D:\computer_vision\data\haarcascades\shape_predictor_68_face_landmarks.dat')
cap = cv2.VideoCapture(r'D:\computer_vision\data\171124_C1_HD_002.mp4')
while True:
# Capture the image from the webcam
ret, img = cap.read()
image = imutils.resize(img, width = 500)
# Convert the image color to grayscale
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
# Detect the face
rects = detector(gray, 1)
# Detect landmarks for each face
for rect in rects:
# Get the landmark points
shape = predictor(gray, rect)
# Convert it to the NumPy Array
shape_np = np.zeros((68, 2), dtype = "int")
for i in range(0, 68):
shape_np[i] = (shape.part(i).x, shape.part(i).y)
shape = shape_np
# Display the landmarks
for i, (x, y) in enumerate(shape):
# Draw the circle to mark the keypoint
cv2.circle(image, (x, y), 1, (0, 0, 255), -1)
# Display the image
cv2.imshow('Landmark Detection', image)
# Press the escape button to terminate the code
if cv2.waitKey(10) == 27:
break
cap.release()
# from image
detector = dlib.get_frontal_face_detector()
predictor = dlib.shape_predictor(r'D:\computer_vision\data\haarcascades\shape_predictor_68_face_landmarks.dat')
img = cv2.imread(r"D:\computer_vision\data\multiple_face.jpeg")
image = imutils.resize(img, width = 500)
# Convert the image color to grayscale
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
# Detect the face
rects = detector(gray, 1)
# Detect landmarks for each face
for rect in rects:
# Get the landmark points
shape = predictor(gray, rect)
# Convert it to the NumPy Array
shape_np = np.zeros((68, 2), dtype = "int")
for i in range(0, 68):
shape_np[i] = (shape.part(i).x, shape.part(i).y)
shape = shape_np
# Display the landmarks
for i, (x, y) in enumerate(shape):
# Draw the circle to mark the keypoint
cv2.circle(image, (x, y), 1, (0, 0, 255), -1)
# Display the image
cv2.imshow('Landmark Detection', image)
cv2.waitKey(0)