-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathfatrop_nlpsol.m
143 lines (113 loc) · 3.12 KB
/
fatrop_nlpsol.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
import casadi.*
% Define symbols
pos = MX.sym('pos', 2);
theta = MX.sym('theta');
delta = MX.sym('delta');
V = MX.sym('V');
% States
x = [pos; theta];
% Controls
u = [delta; V];
L = 1;
% ODE rhs
% Bicycle model
% (S. LaValle. Planning Algorithms. Cambridge University Press, 2006, pp. 724–725.)
ode = [V * [cos(theta); sin(theta)]; V/L * tan(delta)];
% Discretize system
dt = MX.sym('dt');
sys = struct('x', x, 'u', u, 'p', dt, 'ode', ode * dt); % Time scaling
intg = integrator('intg', 'rk', sys, 0, 1, struct('simplify', true, 'number_of_finite_elements', 4));
res = intg('x0', x, 'p', dt, 'u', u);
F = Function('F', {x, u, dt}, {res.xf}, {'x', 'u', 'dt'}, {'xnext'});
nx = numel(x);
nu = numel(u);
f = 0; %Objective
x = {}; % List of decision variable symbols
lbx = [];ubx = []; % Simple bounds
x0 = []; % Initial value
g = {}; % Constraints list
lbg = [];ubg = []; % Constraint bounds
equality = []; % Boolean indicator helping structure detection
p = {}; % Parameters
p_val = []; % Parameter values
N = 20;
T0 = 10;
X = {};
T = {};
U = {};
for k = 1:N+1
X{k} = MX.sym(['X_' num2str(k)], nx);
x{end+1} = X{k};
x0 = [x0; [0; k*T0/N; pi/2]]; % Initial value
lbx = [lbx; -inf(nx, 1)];
ubx = [ubx; inf(nx, 1)];
T{k} = MX.sym(['T_' num2str(k)]);
x{end+1} = T{k};
x0 = [x0; T0];
lbx = [lbx; 0];
ubx = [ubx; inf];
if k <= N
U{k} = MX.sym(['U_' num2str(k)], nu);
x{end+1} = U{k};
x0 = [x0; [0; 1]]; % Initial guess
lbx = [lbx; -pi/6; 0]; % Bounds on delta and V
ubx = [ubx; pi/6; 1];
end
end
% Round obstacle
p0 = [0.2; 5];
r0 = 1;
X0 = MX.sym('X0', nx);
p{end+1} = X0;
p_val = [p_val; [0; 0; pi/2]];
f = sum1(vertcat(T{:})); % Time-optimal objective
for k = 1:N
% Multiple shooting gap-closing constraint
g{end+1} = X{k+1} - F(X{k}, U{k}, T{k}/N);
lbg = [lbg; zeros(nx, 1)];
ubg = [ubg; zeros(nx, 1)];
equality = [equality; true(nx, 1)];
g{end+1} = T{k+1} - T{k};
lbg = [lbg; 0];
ubg = [ubg; 0];
equality = [equality; true];
if k == 1
% Initial constraint
g{end+1} = X{1} - X0;
lbg = [lbg; zeros(nx, 1)];
ubg = [ubg; zeros(nx, 1)];
equality = [equality; true(nx, 1)];
end
% Obstacle avoidance constraint
pos = X{k}(1:2);
g{end+1} = sumsqr(pos - p0);
lbg = [lbg; r0^2];
ubg = [ubg; inf];
equality = [equality; false];
if k == N
% Final constraint
g{end+1} = X{k+1}(1:2);
lbg = [lbg; 0; 10];
ubg = [ubg; 0; 10];
equality = [equality; true; true];
end
end
% Add regularization to the objective
for k = 1:N+1
f = f + sumsqr(X{k}(1));
end
% Solver definition
nlp = struct('f', f, 'g', vertcat(g{:}), 'x', vertcat(x{:}), 'p', vertcat(p{:}));
opts = struct;
opts.expand = true;
opts.fatrop.mu_init = 0.1;
opts.structure_detection = 'auto';
opts.debug = true;
opts.equality = equality;
solver = nlpsol('solver', 'fatrop', nlp, opts);
res = solver('x0', x0, ...
'lbx', lbx, ...
'ubx', ubx, ...
'lbg', lbg, ...
'ubg', ubg, ...
'p', p_val);