-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathapply_vipe_model.py
executable file
·208 lines (168 loc) · 7.27 KB
/
apply_vipe_model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
#!/usr/bin/env python3
import os
import argparse
from collections import defaultdict
import numpy as np
from tqdm import tqdm
import torch
from torch.utils.data import Dataset, DataLoader
from models.module import FCResNet
from models.keypoint import Keypoint_EmbeddingModel
from vipe_dataset.dataset_base import (
normalize_2d_skeleton, NUM_COCO_KEYPOINTS, NUM_COCO_BONES)
from util.io import load_gz_json, load_json, store_pickle
NUM_WORKERS = os.cpu_count() // 2
EMBED_BATCH_SIZE = 250
def get_args():
parser = argparse.ArgumentParser()
parser.add_argument('pose_dir')
parser.add_argument('model_dir')
parser.add_argument('-o', '--out_dir', type=str, required=True)
parser.add_argument('-m', '--model_epoch', type=int)
parser.add_argument('--allow_many_per_frame', action='store_true')
parser.add_argument('--min_score', type=float, default=0)
parser.add_argument('--no_flip', action='store_true',
help='Do not compute horizontally flipped embeddings')
# For Diving48 and floor exercise
parser.add_argument('--invert', action='store_true',
help='Compute embeddings on upside down poses')
return parser.parse_args()
def mean_embs_by_frame(pred_embs, flip):
grouped = defaultdict(list)
for frame_num, emb, meta in pred_embs:
grouped[frame_num].append((emb, meta))
expected_shape = emb.shape
def get_mean(emb_and_metas):
embs, metas = zip(*emb_and_metas)
if len(embs) == 1:
emb, meta = embs[0], metas[0]
else:
emb = np.mean(embs, axis=0)
meta = {'kp_score': min(m['kp_score'] for m in metas),
'is_mean': True}
assert emb.shape == expected_shape
return emb, meta
result = []
for frame_num, emb_and_metas in grouped.items():
if flip:
emb, mean_meta = get_mean(
[x for x in emb_and_metas if not x[1]['is_flip']])
emb_flip, _ = get_mean(
[x for x in emb_and_metas if x[1]['is_flip']])
mean_emb = np.stack((emb, emb_flip))
else:
mean_emb, mean_meta = get_mean(emb_and_metas)
result.append((frame_num, mean_emb, mean_meta))
result.sort(key=lambda x: x[0])
return result
class VideoDataset(Dataset):
def __init__(self, pose_dir, embed_bones, min_score, augment_flip, invert):
super().__init__()
videos = []
for video_name in sorted(os.listdir(pose_dir)):
if video_name.endswith('.json.gz'):
# Flat case
video_pose_path = os.path.join(pose_dir, video_name)
video_name = video_name.split('.json.gz')[0]
else:
# Nested case
video_pose_path = os.path.join(
pose_dir, video_name, 'coco_keypoints.json.gz')
if os.path.exists(video_pose_path):
videos.append((video_name, video_pose_path))
self.videos = videos
self.embed_bones = embed_bones
self.min_score = min_score
self.augment_flip = augment_flip
self.invert = invert
def __len__(self):
return len(self.videos)
def __getitem__(self, idx):
video_name, video_pose_path = self.videos[idx]
frames = []
scores = []
is_flip = []
poses = []
for frame_num, pose_data in load_gz_json(video_pose_path):
for score, _, kp in pose_data:
if score >= self.min_score:
kp = np.array(kp, dtype=np.float32)
if self.invert:
kp[:, 1] *= -1
kp_score = np.mean(kp[:, 2])
frames.append(frame_num),
scores.append(kp_score)
is_flip.append(False)
poses.append(normalize_2d_skeleton(
kp, False, include_bone_features=self.embed_bones))
if self.augment_flip:
frames.append(frame_num)
scores.append(kp_score)
is_flip.append(True)
poses.append(normalize_2d_skeleton(
kp, True, include_bone_features=self.embed_bones))
return {'video': video_name, 'frame': np.array(frames),
'score': np.array(scores), 'is_flip': np.array(is_flip),
'pose': torch.stack(poses) if len(poses) > 0
else np.zeros(0)}
def load_embedding_model(model_dir, model_epoch=None):
print('Loading embedding model:', model_dir)
model_param_file = os.path.join(model_dir, 'config.json')
model_params = load_json(model_param_file)
embedding_dim = model_params['embedding_dim']
encoder_arch = model_params['encoder_arch']
embed_bones = model_params['embed_bones']
print('Embedding dim:', embedding_dim)
print('Encoder architecture:', encoder_arch)
if model_epoch is None:
model_name = 'best_epoch'
else:
model_name = 'epoch{:04d}'.format(model_epoch)
print('Model name:', model_name)
encoder_path = os.path.join(
model_dir, '{}.encoder.pt'.format(model_name))
print('Encoder weights:', encoder_path)
device = 'cuda' if torch.cuda.is_available() else 'cpu'
print('Device:', device)
encoder = FCResNet(
(NUM_COCO_KEYPOINTS + NUM_COCO_BONES
if embed_bones else NUM_COCO_KEYPOINTS) * 3,
embedding_dim, *encoder_arch)
encoder.load_state_dict(torch.load(encoder_path, map_location=device))
return Keypoint_EmbeddingModel(encoder, {}, device), embed_bones
def main(pose_dir, model_dir, model_epoch, out_dir,
allow_many_per_frame, min_score, no_flip, invert):
model, embed_bones = load_embedding_model(model_dir, model_epoch)
# Run inference
dataset = VideoDataset(
pose_dir, embed_bones, min_score, not no_flip, invert)
loader = DataLoader(dataset, shuffle=False, num_workers=NUM_WORKERS)
def write_embs(video_name, embs):
if embs and video_name is not None and out_dir is not None:
os.makedirs(out_dir, exist_ok=True)
if not allow_many_per_frame:
embs = mean_embs_by_frame(embs, not no_flip)
store_pickle(os.path.join(
out_dir, '{}.emb.pkl'.format(video_name)
), embs)
with tqdm(loader) as pbar:
for video_data in pbar:
video_name = video_data['video'][0]
pbar.set_description(video_name)
frames = video_data['frame'][0]
if len(frames) > 0:
embs = []
scores = video_data['score'][0]
is_flip = video_data['is_flip'][0]
poses = video_data['pose'][0]
for i in range(0, frames.shape[0], EMBED_BATCH_SIZE):
batch_embs = model.embed(poses[i:i + EMBED_BATCH_SIZE, :, :])
embs.extend((
frames[i + j].item(), batch_embs[j, :],
{'kp_score': scores[i + j].item(), 'is_mean': False,
'is_flip': is_flip[i + j].item()}
) for j in range(batch_embs.shape[0]))
write_embs(video_name, embs)
print('Done!')
if __name__ == '__main__':
main(**vars(get_args()))