-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathapply_vpd_model.py
executable file
·183 lines (156 loc) · 6.45 KB
/
apply_vpd_model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
#!/usr/bin/env python3
import os
import argparse
import re
from tqdm import tqdm
import torch
from torch.utils.data import DataLoader
from util.io import store_pickle, load_json
from vpd_dataset.single_frame import FrameDataset
from models.rgb import RGBF_EmbeddingModel
import video_dataset_paths as dataset_paths
BATCH_SIZE = 500
def get_args():
parser = argparse.ArgumentParser()
parser.add_argument('model_dir', type=str)
parser.add_argument('-d', '--dataset', type=str, required=True,
choices=['tennis', 'fs', 'fx', 'diving48'])
parser.add_argument('-o', '--out_dir', type=str)
parser.add_argument('-m', '--model_epoch', type=int,
help='Specify an epooh. Otherwise use the best one.')
parser.add_argument('--jitter', type=int,
help='Create additional jittered features.')
parser.add_argument('--no_flip', action='store_true',
help='Do not embed horizontal flips')
parser.add_argument('--flow_img', type=str)
return parser.parse_args()
def get_tennis_dataset(dataset_kwargs):
tasks = []
videos = []
for video_file in tqdm(
os.listdir(dataset_paths.TENNIS_VIDEO_DIR), desc='Loading dataset'
):
if not video_file.endswith('.mp4'):
continue
video_name = os.path.splitext(video_file)[0]
src_video_name, start_frame, end_frame = video_name.rsplit('_', 2)
start_frame = int(start_frame)
end_frame = int(end_frame)
for player in ['front', 'back']:
player_video_name = '{}__{}'.format(player, video_name)
video_id = len(videos)
videos.append(player_video_name)
count = 0
for frame_num in range(start_frame, end_frame + 1):
img_path_prefix = os.path.join(
dataset_paths.TENNIS_CROP_DIR, src_video_name, player,
str(frame_num))
if not os.path.isfile(img_path_prefix + '.png'):
continue
tasks.append((
video_id, frame_num - start_frame, img_path_prefix))
count += 1
if count == 0:
print('{} has no crops'.format(player_video_name))
return videos, FrameDataset(tasks, **dataset_kwargs)
def get_dataset(crop_dir, dataset_kwargs):
img_re = re.compile(r'^\d+\.png$')
tasks = []
videos = []
for video_name in tqdm(os.listdir(crop_dir), desc='Loading dataset'):
video_crop_dir = os.path.join(crop_dir, video_name)
if not os.path.isdir(video_crop_dir):
continue
video_id = len(videos)
videos.append(video_name)
for img_file in os.listdir(video_crop_dir):
if not img_re.match(img_file):
continue
frame_num = int(os.path.splitext(img_file)[0])
tasks.append((
video_id, frame_num,
os.path.join(video_crop_dir, str(frame_num))
))
return videos, FrameDataset(tasks, **dataset_kwargs)
def main(dataset, model_dir, out_dir, model_epoch, flow_img, jitter, no_flip):
device = 'cuda' if torch.cuda.is_available() else 'cpu'
model_param_file = os.path.join(model_dir, 'config.json')
model_params = load_json(model_param_file)
emb_dim = model_params['emb_dim']
encoder_arch = model_params['encoder_arch']
img_dim = model_params['img_dim']
use_flow = model_params['use_flow']
if use_flow:
assert flow_img is not None, 'No flow image name specified'
embed_time = model_params['embed_time']
rgb_mean_std = model_params['rgb_mean_std']
print('Embedding dim:', emb_dim)
print('Encoder architecture:', encoder_arch)
print('Image dim:', img_dim)
print('Use flow:', use_flow, '(name = {})'.format(flow_img))
print('Embed time:', embed_time)
print('Flip:', not no_flip)
print('RGB mean & std:', rgb_mean_std)
dataset_kwargs = {
'img_dim': img_dim, 'flow_img_name': flow_img,
'rgb_mean_std': rgb_mean_std, 'augment_flip': not no_flip
}
if jitter is not None:
print('Augment: jitter {}'.format(jitter))
dataset_kwargs['augment_jitter'] = jitter
if dataset == 'tennis':
videos, dataset = get_tennis_dataset(dataset_kwargs)
elif dataset == 'fs':
videos, dataset = get_dataset(
dataset_paths.FS_CROP_DIR, dataset_kwargs)
elif dataset == 'fx':
videos, dataset = get_dataset(
dataset_paths.FX_CROP_DIR, dataset_kwargs)
elif dataset == 'diving48':
videos, dataset = get_dataset(
dataset_paths.DIVING48_CROP_DIR, dataset_kwargs)
else:
raise NotImplementedError()
if model_epoch is None:
model_name = 'best_epoch'
else:
model_name = 'epoch{:04d}'.format(model_epoch)
print('Model name:', model_name)
encoder_path = os.path.join(model_dir, '{}.encoder.pt'.format(model_name))
encoder = RGBF_EmbeddingModel(encoder_arch, emb_dim, use_flow, device)
encoder.load_state_dict(torch.load(encoder_path, map_location=device))
encoder.to(device)
batch_size = BATCH_SIZE
if jitter is not None:
batch_size = batch_size // (jitter + 1)
if no_flip:
batch_size *= 2
with tqdm(total=len(dataset), desc='Embedding frames') as pbar:
all_embs = [list() for _ in videos]
for batch in DataLoader(
dataset, batch_size=batch_size, shuffle=False,
num_workers=os.cpu_count() // 2
):
video_ids = batch['video'].tolist()
frame_nums = batch['frame'].tolist()
n_batch, k, w, h, d = batch['img'].shape
batch_embs = encoder.embed(batch['img'].view(-1, w, h, d)).reshape(
(n_batch, k, -1))
for i in range(n_batch):
all_embs[video_ids[i]].append((
frame_nums[i],
batch_embs[i, :, :] if k > 1 else batch_embs[i, 0, :],
{}
))
pbar.update(n_batch)
if out_dir is not None:
for video_name, embs in zip(videos, all_embs):
if len(embs) > 0:
embs.sort()
out_path = os.path.join(
out_dir, '{}.emb.pkl'.format(video_name))
os.makedirs(out_dir, exist_ok=True)
store_pickle(out_path, embs)
print('Done!')
if __name__ == '__main__':
main(**vars(get_args()))