Skip to content

Latest commit

 

History

History
321 lines (238 loc) · 22.7 KB

README.md

File metadata and controls

321 lines (238 loc) · 22.7 KB

Contributors Forks Stargazers Issues


Transfer Leanring

Everything about Transfer Learning. 迁移学习.

PapersTutorialsResearch areasTheorySurveyCodeDataset & benchmark

ThesisScholarsContestsJournal/conferenceApplicationsOthersContributing

Widely used by top conferences and journals:

@Misc{transferlearning.xyz,
howpublished = {\url{http://transferlearning.xyz}},
title = {Everything about Transfer Learning and Domain Adapation},
author = {Wang, Jindong and others}
}

Awesome MIT License LICENSE 996.icu

Related Codes:


NOTE: You can directly open the code in Gihub Codespaces on the web to run them without downloading! Also, try github.dev.

0.Papers (论文)

Awesome transfer learning papers (迁移学习文章汇总)

  • Paperweekly: A website to recommend and read paper notes

Latest papers:

Updated at 2025-01-14:

  • Cross-Domain Ensemble Distillation for Domain Generalization [arxiv]
    • Cross-domain ensemble distillation for domain generalization

Updated at 2024-12-25:

  • Privacy in Fine-tuning Large Language Models: Attacks, Defenses, and Future Directions [arxiv]

    • Privacy in LLM fine-tuning
  • Learning to Generate Gradients for Test-Time Adaptation via Test-Time Training Layers [arxiv]

    • Generate gradients for TTA

Updated at 2024-12-19:

  • Is Large-Scale Pretraining the Secret to Good Domain Generalization? [arxiv]
    • Large-scale pre-training vs domain generalization

Updated at 2024-11-29:

  • Generating Out-Of-Distribution Scenarios Using Language Models [arxiv]
    • Generating OOD settings using language models

Updated at 2024-11-01:

  • Unified Domain Generalization and Adaptation for Multi-View 3D Object Detection [arxiv]
    • Unified domain generalization and adaptation for multi-view 3D object detection

1.Introduction and Tutorials (简介与教程)

Want to quickly learn transfer learning?想尽快入门迁移学习?看下面的教程。


2.Transfer Learning Areas and Papers (研究领域与相关论文)


3.Theory and Survey (理论与综述)

Here are some articles on transfer learning theory and survey.

Survey (综述文章):

Theory (理论文章):


4.Code (代码)

Unified codebases for:

More: see HERE and HERE for an instant run using Google's Colab.


5.Transfer Learning Scholars (著名学者)

Here are some transfer learning scholars and labs.

全部列表以及代表工作性见这里

Please note that this list is far not complete. A full list can be seen in here. Transfer learning is an active field. If you are aware of some scholars, please add them here.


6.Transfer Learning Thesis (硕博士论文)

Here are some popular thesis on transfer learning.

这里, 提取码:txyz。


7.Datasets and Benchmarks (数据集与评测结果)

Please see HERE for the popular transfer learning datasets and benchmark results.

这里整理了常用的公开数据集和一些已发表的文章在这些数据集上的实验结果。


8.Transfer Learning Challenges (迁移学习比赛)


Journals and Conferences

See here for a full list of related journals and conferences.


Applications (迁移学习应用)

See HERE for transfer learning applications.

迁移学习应用请见这里


Other Resources (其他资源)


Contributing (欢迎参与贡献)

If you are interested in contributing, please refer to HERE for instructions in contribution.


Copyright notice

[Notes]This Github repo can be used by following the corresponding licenses. I want to emphasis that it may contain some PDFs or thesis, which were downloaded by me and can only be used for academic purposes. The copyrights of these materials are owned by corresponding publishers or organizations. All this are for better academic research. If any of the authors or publishers have concerns, please contact me to delete or replace them.