forked from huggingface/picotron
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
281 lines (225 loc) · 13.2 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
"""Training script for LLaMA model.
CUDA_DEVICE_MAX_CONNECTIONS=1 torchrun --nproc_per_node 4 --master_addr localhost --master_port 25500 train.py --config tmp/dummy/llama2_7b_benchmark.json
CUDA_DEVICE_MAX_CONNECTIONS=1 debugpy-run -p 5678 -m torch.distributed.run -- --nproc_per_node=4 --nnodes=1 --rdzv_backend=c10d --rdzv_endpoint=localhost:29400 train.py --config tmp/dummy/llama2_7b_benchmark.json
"""
import os
import inspect
import json
import time
import datetime
import argparse
import torch.nn.functional as F
import torch, torch.distributed as dist
from torch.optim import AdamW
from transformers import AutoConfig
from picotron.context_parallel.context_parallel import apply_context_parallel
from picotron.tensor_parallel.tensor_parallel import apply_tensor_parallel
import picotron.process_group_manager as pgm
from picotron.utils import average_loss_across_dp_cp_ranks, set_all_seed, print, to_readable_format, get_mfu, get_num_params
from picotron.checkpoint import CheckpointManager
from picotron.checkpoint import init_model_with_dematerialized_weights, init_model_with_materialized_weights
from picotron.data import MicroBatchDataLoader
from picotron.process_group_manager import setup_process_group_manager
from picotron.pipeline_parallel.pipeline_parallel import train_step_pipeline_1f1b, train_step_pipeline_afab, PipelineParallel
from picotron.data_parallel.data_parallel import DataParallelBucket
from picotron.model import Llama
from picotron.utils import download_model
import wandb
def train_step(model, data_loader, device):
acc_loss = 0.0
requires_grad_sync = pgm.process_group_manager.cp_dp_world_size > 1
for i in range(data_loader.grad_acc_steps):
# get the next batch
batch = next(data_loader)
input_ids = batch["input_ids"].to(device)
target_ids = batch["target_ids"].to(device)
# disable gradient synchronization for all but the last micro-batch
if requires_grad_sync:
model.require_backward_grad_sync = (i == data_loader.grad_acc_steps - 1)
outputs = model(input_ids=input_ids)
# compute the loss
batch_size, seq_len = input_ids.shape
target_ids = target_ids.reshape(-1)
outputs = outputs.view(seq_len*batch_size, -1)
loss = F.cross_entropy(outputs, target_ids, reduction='mean') / data_loader.grad_acc_steps
loss.backward()
acc_loss += loss.item()
return acc_loss
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--config", type=str, default="", help="Path to config file")
args = parser.parse_args()
with open(args.config, "r") as f:
config = json.load(f)
os.environ["OMP_NUM_THREADS"] = config["environment"]["OMP_NUM_THREADS"]
os.environ["TOKENIZERS_PARALLELISM"] = config["environment"]["TOKENIZERS_PARALLELISM"]
os.environ["FLASH_ATTEN"] = config["environment"]["FLASH_ATTEN"]
os.environ["DEVICE"] = "cpu" if config["distributed"]["use_cpu"] else "cuda"
if config["environment"].get("HF_TOKEN") is None:
if "HF_TOKEN" not in os.environ: raise ValueError("HF_TOKEN is neither set in the config file nor in the environment")
else:
if "HF_TOKEN" not in os.environ:
os.environ["HF_TOKEN"] = config["environment"]["HF_TOKEN"]
else:
print("Warning: HF_TOKEN is set in the environment and the config file. Using the environment variable.")
dtype = torch.bfloat16 if torch.cuda.is_available() and torch.cuda.is_bf16_supported() and not config["distributed"]["use_cpu"] else torch.float32
assert (dtype == torch.bfloat16 and os.getenv("FLASH_ATTEN") == "1") or os.getenv("FLASH_ATTEN") != "1", "Kernel operations requires dtype=torch.bfloat16"
local_rank = int(os.environ["LOCAL_RANK"])
global_rank = int(os.environ["RANK"])
world_size = int(os.environ["WORLD_SIZE"])
backend = "gloo" if config["distributed"]["use_cpu"] else "nccl"
assert config["training"]["seq_length"] % config["distributed"]["cp_size"] == 0, "seq_length must be divisible by cp_size for Context Parallelism"
assert world_size == config["distributed"]["tp_size"] * config["distributed"]["pp_size"] * config["distributed"]["dp_size"] * config["distributed"]["cp_size"], "world_size must be equal to tp_size * pp_size * dp_size * cp_size"
if backend == "nccl":
torch.cuda.set_device(local_rank)
device = torch.device("cuda", local_rank)
else:
device = torch.device("cpu")
dist.init_process_group(rank=global_rank, world_size=world_size, backend=backend, init_method=f"env://", timeout=datetime.timedelta(minutes=3))
setup_process_group_manager(
tp_size=config["distributed"]["tp_size"],
cp_size=config["distributed"]["cp_size"],
pp_size=config["distributed"]["pp_size"],
dp_size=config["distributed"]["dp_size"]
)
is_wandb_rank = pgm.process_group_manager.tp_rank == 0 and pgm.process_group_manager.dp_rank == 0 and pgm.process_group_manager.cp_rank == 0 and pgm.process_group_manager.pp_is_last_stage
set_all_seed(config["training"]["seed"])
start_time = time.time()
data_loader = MicroBatchDataLoader(
micro_batch_size=config["training"]["micro_batch_size"],
seq_length=config["training"]["seq_length"],
dataset_name=config["dataset"]["name"],
tokenizer_name=config["model"]["name"],
grad_acc_steps=config["training"]["gradient_accumulation_steps"],
device=device,
num_workers=config["dataset"]["num_workers"],
num_proc=config["dataset"]["num_proc"],
num_samples=config["training"].get("num_samples", None),
subset_name=config["dataset"].get("subset_name", None),
split=config["dataset"].get("split", "train")
)
# download model on the first rank, assume all ranks have access to the same filesystem
if pgm.process_group_manager.global_rank == 0:
download_model(config["model"]["name"], os.environ["HF_TOKEN"])
dist.barrier()
print(f"init dataloader time: {time.time()-start_time:.2f}s", is_print_rank=is_wandb_rank)
tokens_per_step = data_loader.global_batch_size * config["training"]["seq_length"]
if pgm.process_group_manager.global_rank == 0:
print("Tokens per step:", to_readable_format(tokens_per_step), is_print_rank=is_wandb_rank)
if is_wandb_rank and config["logging"]["use_wandb"]:
wandb.init(
project="picotron",
name=f"{config['logging']['run_name']}_{to_readable_format(tokens_per_step)}_{pgm.process_group_manager}",
config={
"tensor_parallel_size": pgm.process_group_manager.tp_world_size,
"context_parallel_size": pgm.process_group_manager.cp_world_size,
"pipeline_parallel_size": pgm.process_group_manager.pp_world_size,
"data_parallel_size": pgm.process_group_manager.dp_world_size,
"model": config["model"]["name"],
"dataset": config["dataset"]["name"],
"max_tokens": config["training"]["max_tokens"],
"learning_rate": config["training"]["learning_rate"],
"seed": config["training"]["seed"],
"micro_batch_size": data_loader.micro_batch_size,
"global_batch_size": data_loader.global_batch_size,
"gradient_accumulation": data_loader.grad_acc_steps,
},
)
if pgm.process_group_manager.global_rank == 0:
print(f"rank {pgm.process_group_manager.global_rank}: Creating model config")
model_config = AutoConfig.from_pretrained(config["model"]["name"])
# twist the model structure if specified in the config file
model_config.num_hidden_layers = model_config.num_hidden_layers if "num_hidden_layers" not in config["model"] else config["model"]["num_hidden_layers"]
model_config.num_attention_heads = model_config.num_attention_heads if "num_attention_heads" not in config["model"] else config["model"]["num_attention_heads"]
model_config.num_key_value_heads = model_config.num_key_value_heads if "num_key_value_heads" not in config["model"] else config["model"]["num_key_value_heads"]
model_config.max_position_embeddings = config["training"]["seq_length"]
objects = [model_config]
else:
objects = [None]
dist.broadcast_object_list(objects, src=0, device=device)
model_config = objects[0]
print(f"rank {pgm.process_group_manager.global_rank}: Broadcasting model_config to all ranks", is_print_rank=pgm.process_group_manager.global_rank==0)
dist.barrier()
print(f"rank {pgm.process_group_manager.global_rank}: Initializing model meta device", is_print_rank=is_wandb_rank)
start_time = time.time()
with init_model_with_dematerialized_weights():
model = Llama(config=model_config)
if pgm.process_group_manager.tp_world_size > 1:
model = apply_tensor_parallel(model)
if pgm.process_group_manager.pp_world_size > 1:
model = PipelineParallel(model, model_config)
model = init_model_with_materialized_weights(model, model_config, save_dir=f"./hf_model_safetensors/")
#TODO: load existing checkpoint here to continue pre-training
if pgm.process_group_manager.cp_world_size > 1:
model = apply_context_parallel(model)
model.to(dtype).to(device)
if pgm.process_group_manager.dp_world_size > 1:
model = DataParallelBucket(model)
print(f"init model parallel time: {time.time()-start_time:.2f}s", is_print_rank=is_wandb_rank)
model.train()
num_params = get_num_params(model)
print(f"Number of parameters: {to_readable_format(num_params)}", is_print_rank=is_wandb_rank)
tensor_shapes = (data_loader.micro_batch_size, data_loader.seq_length_per_gpu, model_config.hidden_size)
extra_args = dict()
if config["model"]["use_fused_adam"]:
fused_available = 'fused' in inspect.signature(torch.optim.AdamW).parameters
use_fused = fused_available and device == 'cuda'
extra_args = dict(fused=True) if use_fused else dict()
optimizer = AdamW(model.parameters(), lr=config["training"]["learning_rate"], **extra_args)
checkpoint_manager = CheckpointManager()
trained_tokens, step = 0, 0
if config["checkpoint"]["load_path"]:
step, trained_tokens = checkpoint_manager.load_checkpoint(model, optimizer, config["checkpoint"]["load_path"])
dist.barrier()
while config["training"]["max_tokens"] is None or trained_tokens < config["training"]["max_tokens"]:
step_start_time = time.time()
optimizer.zero_grad()
if pgm.process_group_manager.pp_world_size > 1:
if config["distributed"]["pp_engine"] == "afab":
loss = train_step_pipeline_afab(model, data_loader, tensor_shapes, device, dtype)
elif config["distributed"]["pp_engine"] == "1f1b":
loss = train_step_pipeline_1f1b(model, data_loader, tensor_shapes, device, dtype)
else:
raise ValueError(f"Invalid pipeline parallel engine: {config['distributed']['pp_engine']}")
else:
loss = train_step(model, data_loader, device)
loss = average_loss_across_dp_cp_ranks(loss, device)
optimizer.step()
trained_tokens += tokens_per_step
step += 1
if hasattr(model, 'reset'):
model.reset()
step_duration = time.time() - step_start_time
tokens_per_second = tokens_per_step / step_duration
tokens_per_second_per_gpu = tokens_per_second / world_size
mfu = get_mfu(tokens_per_second_per_gpu, num_params, model_config)
if is_wandb_rank:
print(
f"[rank {pgm.process_group_manager.global_rank}] "
f"Step: {step:<5d} | "
f"Loss: {loss:6.4f} | "
f"Global batch size: {to_readable_format(tokens_per_step):>7s} | "
f"Tokens/s: {to_readable_format(tokens_per_second):>7s} | "
f"Tokens/s/GPU: {to_readable_format(tokens_per_second_per_gpu):>7s} | "
f"Tokens: {to_readable_format(trained_tokens):>7s}{('/' + to_readable_format(config['training']['max_tokens'])) if config['training']['max_tokens'] else ''} | "
f"MFU: {mfu:5.2f}% | "
f"Memory usage: {torch.cuda.memory_reserved() / 1e9:6.2f}GB",
is_print_rank=is_wandb_rank
)
if config["logging"]["use_wandb"]:
wandb.log({
"loss": loss,
"tokens_per_step": tokens_per_step,
"tokens_per_second": tokens_per_step / step_duration,
"mfu": mfu,
"tokens_per_second_per_gpu": tokens_per_second_per_gpu,
"memory_usage": torch.cuda.memory_reserved() / 1e9,
"trained_tokens": trained_tokens
})
if step % config["checkpoint"]["save_frequency"] == 0:
checkpoint_manager.save_checkpoint(model, optimizer, step, trained_tokens, config["checkpoint"]["save_dir"]+f"/{step}")
if step >= config["training"]["total_train_steps"]:
break
if is_wandb_rank and config["logging"]["use_wandb"]:
wandb.finish()
dist.destroy_process_group()