-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathPresentation.tex
387 lines (298 loc) · 9.96 KB
/
Presentation.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
% !TEX TS-program = pdflatex
% !TEX encoding = UTF-8 Unicode
% This file is a template using the "beamer" package to create slides for a talk or presentation
% - Giving a talk on some subject.
% - The talk is between 15min and 45min long.
% - Style is ornate.
% MODIFIED by Jonathan Kew, 2008-07-06
% The header comments and encoding in this file were modified for inclusion with TeXworks.
% The content is otherwise unchanged from the original distributed with the beamer package.
\documentclass{beamer}
% Copyright 2004 by Till Tantau <[email protected]>.
%
% In principle, this file can be redistributed and/or modified under
% the terms of the GNU Public License, version 2.
%
% However, this file is supposed to be a template to be modified
% for your own needs. For this reason, if you use this file as a
% template and not specifically distribute it as part of a another
% package/program, I grant the extra permission to freely copy and
% modify this file as you see fit and even to delete this copyright
% notice.
\mode<presentation>
{
\usetheme{Warsaw}
% or ...
\setbeamercovered{transparent}
% or whatever (possibly just delete it)
}
\usepackage[english]{babel}
% or whatever
\usepackage[utf8]{inputenc}
% or whatever
\usepackage{times}
\usepackage[T1]{fontenc}
\RequirePackage[numbers,sort&compress,square,comma]{natbib}
\bibliographystyle{IEEEtranN}
% Or whatever. Note that the encoding and the font should match. If T1
% does not look nice, try deleting the line with the fontenc.
\title[Quantum Dots with Primitives] % (optional, use only with long paper titles)
{Modeling Quantum Dots using Geometric Primitives}
\subtitle
{} % (optional)
\author[] % (optional, use only with lots of authors)
{J. M. Calderon}
% - Use the \inst{?} command only if the authors have different
% affiliation.
\institute[University of York] % (optional, but mostly needed)
{%
Department of Computer Science\\
University of York
}
% - Use the \inst command only if there are several affiliations.
% - Keep it simple, no one is interested in your street address.
\date[] % (optional)
{19-9-2011 / MSc NC Presentation}
\subject{Talks}
% This is only inserted into the PDF information catalog. Can be left
% out.
% If you have a file called "university-logo-filename.xxx", where xxx
% is a graphic format that can be processed by latex or pdflatex,
% resp., then you can add a logo as follows:
% \pgfdeclareimage[height=0.5cm]{university-logo}{university-logo-filename}
% \logo{\pgfuseimage{university-logo}}
% Delete this, if you do not want the table of contents to pop up at
% the beginning of each subsection:
\AtBeginSubsection[]
{
\begin{frame}<beamer>{Outline}
\tableofcontents[currentsection,currentsubsection]
\end{frame}
}
% If you wish to uncover everything in a step-wise fashion, uncomment
% the following command:
%\beamerdefaultoverlayspecification{<+->}
\begin{document}
\begin{frame}
\titlepage
\end{frame}
\begin{frame}{Outline}
\tableofcontents
% You might wish to add the option [pausesections]
\end{frame}
% Since this a solution template for a generic talk, very little can
% be said about how it should be structured. However, the talk length
% of between 15min and 45min and the theme suggest that you stick to
% the following rules:
% - Exactly two or three sections (other than the summary).
% - At *most* three subsections per section.
% - Talk about 30s to 2min per frame. So there should be between about
% 15 and 30 frames, all told.
\section{Introduction}
\subsection[What are Quantum Dots?]{Explaining Quantum Dots}
\begin{frame}
The Sch\"{o}dinger Equation
\begin{equation}
E\psi = -\frac{\hbar ^2}{2m}\nabla ^2 \psi + V\psi \nonumber
\label{eq:timeIndependent2}
\end{equation}
Where
\begin{equation}
\nabla ^2 = \left(\frac{\partial ^2}{\partial x} + \frac{\partial ^2}{\partial y} + \frac{\partial ^2}{\partial z}\right) \nonumber
\label{eq:laplace}
\end{equation}
and
$$\psi \rightarrow \text{the wave equation for the particle}$$
\end{frame}
\begin{frame}[fragile]{Understanding Potential Wells}{Potential Wells}
Free particles like to reside where the potential energy is low
\begin{figure}[h]
\centering
\includegraphics[scale=0.7]{figures/realWell.eps}
\end{figure}
Normally a function describing this function can be complex (the red line), so physicists
approximate it using a trivial function to make things easier (blue line) \cite{dots}.
\end{frame}
\begin{frame}[fragile]{Quantum Confinement}{}
Infinitely deep well $\rightarrow$ quantum confinement
\begin{figure}[h]
\centering
\includegraphics[scale=.7]{figures/confined.eps}
\end{figure}
\end{frame}
\begin{frame}{Quantum Dots as Artificial Atoms}{}
% - A title should summarize the slide in an understandable fashion
% for anyone how does not follow everything on the slide itself.
Quantum Confinement in 3D -> Artificial atom
\begin{itemize}
\item
Question: What atomic properties are we looking to exploit?
\pause
\item
Answer: Fluorescence.
\end{itemize}
\end{frame}
\begin{frame}[fragile]{Fluorescence}{Fluorescence 1}
How fluorescence works
\begin{figure}[h]
\centering
\includegraphics[scale=0.7]{figures/atomEnergies.eps}
\end{figure}
A photon `hits' an electron into its excited state.
\end{frame}
\begin{frame}[fragile]{Fluorescence}{Fluorescence 2}
How fluorescence works
\begin{figure}[h]
\centering
\includegraphics[scale=0.7]{figures/flourece.eps}
\end{figure}
When the electron comes back `down' form the excited state
light is emitted \cite{qp}.
\end{frame}
\section{Method}
\subsection{Approximating the kinetic energy}
\begin{frame}
Remembering the Schr\"{o}dinger equation
\begin{equation}
E\psi = -\frac{\hbar ^2}{2m}\nabla ^2 \psi + V\psi \nonumber
\label{eq:timeIndependent2}
\end{equation}
Let us first model the kinetic energy part
$$K = -\frac{\hbar ^2}{2m}\nabla ^2$$
where
$$
\nabla ^2 = \left(\frac{\partial ^2}{\partial x} + \frac{\partial ^2}{\partial y} + \frac{\partial ^2}{\partial z}\right) \nonumber
$$
\end{frame}
\begin{frame}
$$f'(x) \approx \frac{f(x + h) - f(x)}{h}$$
and
$$f''(x) \approx \frac{f(x + h) - 2f(x) + f(x - h)}{h^2}$$
\end{frame}
\begin{frame}
This gives us the following matrix for $f''(x)$
\begin{equation}
\begin{bmatrix}
-2 & 1 & 0 & 0 & \cdots & 0 \\
1 & -2 & 1 & 0 & \cdots & 0 \\
0 & 1 & -2 & 1 & \cdots & 0 \\
\vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\
0 & \cdots & \cdots & 0 & 1 & -2
\end{bmatrix} \nonumber
\end{equation}
\end{frame}
\begin{frame}
This works fine for a one dimensional function like this one
\begin{figure}[h]
\centering
\includegraphics[scale=0.3]{figures/sampledFunc3.eps}
\end{figure}
But what about higher dimensionality?
\end{frame}
\begin{frame}
This is what we want!
\begin{figure}
\centering
\includegraphics[scale=1.2]{figures/finite2D.eps}
\label{fig:finite2D}
\end{figure}
\end{frame}
\begin{frame}
Luckily, we can use the tensor product to achieve this.
For 2 dimensions
\begin{equation}
K = X \otimes I + I \otimes Y \nonumber
\end{equation}
For 3 dimensions
\begin{equation}
K = X \otimes I \otimes I + I \otimes Y \otimes I + I \otimes I \otimes Z \nonumber
\end{equation}
This process gives us the appropriate approximation of the kinetic energy matrix.
\end{frame}
\subsection{Potential Energy Matrix}
\begin{frame}
Now we can create our potential energy matrix.
\begin{itemize}
\item Have a set of defined primitives
\item Iterate through the set of sample points
\item For each point determine if it is inside any of the primitves
\item Place results along the diagonal of a matrix.
\end{itemize}
\end{frame}
\begin{frame}
Set of primitives
\begin{itemize}
\item Sphere
\item Rectangular Prism
\item Cylinder
\end{itemize}
\end{frame}
\begin{frame}
Determining if a point is inside a prism
\begin{figure}[h!]
\centering
\includegraphics[scale=1.2]{figures/recPrism.eps}
\end{figure}
\end{frame}
\subsection{Combining The Two}
\begin{frame}
Now that we have both matrices we can add them together and solve for the eigenvalues.
$$E\psi = K \psi + V \psi$$
The eigenvalues of $E$ codify the spectral information of the quantum dot.
\end{frame}
\section{Results}
\subsection{Results}
\begin{frame}
Having an implementation, we can now compare its results to an analytical solution (of a very simple case).
Two comparisons can be made
\begin{itemize}
\item First ten eigenvalues should be $3,6,6,6,9,9,9,11,11,11$
\item For a cube of $.8$ the length of the sample cube, the lowest eigenvalue should be $46.2638$
\end{itemize}
\end{frame}
\begin{frame}[fragile]
Percent error of the first ten eigenvalues (increasing the sample rate)
\begin{figure}
\centering
\includegraphics[scale=0.4]{figures/meanPercentError.eps}
\end{figure}
\end{frame}
\begin{frame}
Value of first eigenvalue with cube of $.8$ the length of the sample cube.
\begin{figure}[!h]
\centering
\includegraphics[scale=0.4]{figures/M2converge.eps}
\end{figure}
\end{frame}
\section*{Conclusion}
\begin{frame}{Conclusion}
% Keep the summary *very short*.
\begin{itemize}
\item
By using primitives we can abstract away from the sample-point level.
\item
Using the approximation methods based on the Taylor series provides a simple
yet effective approximation of the energy levels.
\item
Finding computers that had sufficient memory resources proved to be a problem.
\end{itemize}
% The following outlook is optional.
\vskip0pt plus.5fill
\begin{itemize}
\item
Outlook
\begin{itemize}
\item
Run more tests, including the variation of the potential field (changing the surrounding electric field)
\item
Use this to create an evolutionary algorithm to find optimal shapes for desired spectral properties.
\end{itemize}
\end{itemize}
\end{frame}
\section*{Questions}
\begin{frame}
\centering
Questions
\end{frame}
\bibliography{diss}
\end{document}