forked from RobinDavid/Motion-detection-OpenCV
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathMotionDetectorContours.py
120 lines (91 loc) · 5.23 KB
/
MotionDetectorContours.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
import cv2.cv as cv
from datetime import datetime
import time
class MotionDetectorAdaptative():
def onChange(self, val): #callback when the user change the detection threshold
self.threshold = val
def __init__(self,threshold=25, doRecord=True, showWindows=True):
self.writer = None
self.font = None
self.doRecord=doRecord #Either or not record the moving object
self.show = showWindows #Either or not show the 2 windows
self.frame = None
self.capture=cv.CaptureFromCAM(0)
self.frame = cv.QueryFrame(self.capture) #Take a frame to init recorder
if doRecord:
self.initRecorder()
self.gray_frame = cv.CreateImage(cv.GetSize(self.frame), cv.IPL_DEPTH_8U, 1)
self.average_frame = cv.CreateImage(cv.GetSize(self.frame), cv.IPL_DEPTH_32F, 3)
self.absdiff_frame = None
self.previous_frame = None
self.surface = self.frame.width * self.frame.height
self.currentsurface = 0
self.currentcontours = None
self.threshold = threshold
self.isRecording = False
self.trigger_time = 0 #Hold timestamp of the last detection
if showWindows:
cv.NamedWindow("Image")
cv.CreateTrackbar("Detection treshold: ", "Image", self.threshold, 100, self.onChange)
def initRecorder(self): #Create the recorder
codec = cv.CV_FOURCC('M', 'J', 'P', 'G')
self.writer=cv.CreateVideoWriter(datetime.now().strftime("%b-%d_%H_%M_%S")+".wmv", codec, 5, cv.GetSize(self.frame), 1)
#FPS set to 5 because it seems to be the fps of my cam but should be ajusted to your needs
self.font = cv.InitFont(cv.CV_FONT_HERSHEY_SIMPLEX, 1, 1, 0, 2, 8) #Creates a font
def run(self):
started = time.time()
while True:
currentframe = cv.QueryFrame(self.capture)
instant = time.time() #Get timestamp o the frame
self.processImage(currentframe) #Process the image
if not self.isRecording:
if self.somethingHasMoved():
self.trigger_time = instant #Update the trigger_time
if instant > started +10:#Wait 5 second after the webcam start for luminosity adjusting etc..
print "Something is moving !"
if self.doRecord: #set isRecording=True only if we record a video
self.isRecording = True
cv.DrawContours (currentframe, self.currentcontours, (0, 0, 255), (0, 255, 0), 1, 2, cv.CV_FILLED)
else:
if instant >= self.trigger_time +10: #Record during 10 seconds
print "Stop recording"
self.isRecording = False
else:
cv.PutText(currentframe,datetime.now().strftime("%b %d, %H:%M:%S"), (25,30),self.font, 0) #Put date on the frame
cv.WriteFrame(self.writer, currentframe) #Write the frame
if self.show:
cv.ShowImage("Image", currentframe)
c=cv.WaitKey(1) % 0x100
if c==27 or c == 10: #Break if user enters 'Esc'.
break
def processImage(self, curframe):
cv.Smooth(curframe, curframe) #Remove false positives
if not self.absdiff_frame: #For the first time put values in difference, temp and moving_average
self.absdiff_frame = cv.CloneImage(curframe)
self.previous_frame = cv.CloneImage(curframe)
cv.Convert(curframe, self.average_frame) #Should convert because after runningavg take 32F pictures
else:
cv.RunningAvg(curframe, self.average_frame, 0.05) #Compute the average
cv.Convert(self.average_frame, self.previous_frame) #Convert back to 8U frame
cv.AbsDiff(curframe, self.previous_frame, self.absdiff_frame) # moving_average - curframe
cv.CvtColor(self.absdiff_frame, self.gray_frame, cv.CV_RGB2GRAY) #Convert to gray otherwise can't do threshold
cv.Threshold(self.gray_frame, self.gray_frame, 50, 255, cv.CV_THRESH_BINARY)
cv.Dilate(self.gray_frame, self.gray_frame, None, 15) #to get object blobs
cv.Erode(self.gray_frame, self.gray_frame, None, 10)
def somethingHasMoved(self):
# Find contours
storage = cv.CreateMemStorage(0)
contours = cv.FindContours(self.gray_frame, storage, cv.CV_RETR_EXTERNAL, cv.CV_CHAIN_APPROX_SIMPLE)
self.currentcontours = contours #Save contours
while contours: #For all contours compute the area
self.currentsurface += cv.ContourArea(contours)
contours = contours.h_next()
avg = (self.currentsurface*100)/self.surface #Calculate the average of contour area on the total size
self.currentsurface = 0 #Put back the current surface to 0
if avg > self.threshold:
return True
else:
return False
if __name__=="__main__":
detect = MotionDetectorAdaptative(doRecord=True)
detect.run()