-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathgpt_hue.py
210 lines (168 loc) · 7.6 KB
/
gpt_hue.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
from phue import Bridge
import openai
from dotenv import load_dotenv
from os import getenv
import json
def cost_calc(num_tokens: int) -> float:
"""
For parm number of tokens used, return cost incurred in USD.
"""
# From, https://openai.com/pricing, gpt-3.5-turbo is $0.002 per 1000 tokens.
return num_tokens * 0.002 / 1000
class Persona:
def __init__(self, gpt_model: str, persona_name: str, functions: list):
self.gpt_model = gpt_model
self.persona_name = persona_name
self.functions = functions
self.history = []
self.cumulative_tokens = 0
def give_mission(self, mission: str, response: str):
print(self.persona_name + ' mission...')
print(mission)
print('------------')
self.update_history(role='user', content=mission)
# 'Trick' GPT into thinking it understood us earlier in the conversation.
self.update_history(role='assistant', content=response)
def update_history(self, role: str, content: str):
assert role in ['assistant', 'user']
self.history.append({'role': role, 'content': content})
def chat(self, prompt: str):
self.update_history(role='user', content=prompt)
completion = openai.ChatCompletion.create(model=self.gpt_model,
messages=self.history,
functions=self.functions,
function_call="auto")
self.cumulative_tokens += int(completion.usage.total_tokens)
reply_content = completion.choices[0].message
# print(reply_content)
if 'function_call' in reply_content:
func_name = reply_content['function_call']['name']
args_json = reply_content.to_dict()['function_call']['arguments']
payload = json.loads(args_json)
payload['function_name'] = func_name
# print(payload)
return payload
else:
content = reply_content['content']
print(self.persona_name + ': ' + content)
self.update_history(role='assistant', content=content)
return {}
class Lights:
def __init__(self, bridge_ip):
self.bridge = Bridge(bridge_ip)
# If the app is not registered and the button is not pressed, press the button and call connect()
# (this only needs to be run a single time)
self.bridge.connect()
# Get the bridge state (This returns the full dictionary that you can explore)
bridge_state = self.bridge.get_api()
# Make a single dictionary of all the lights and groups.
# Key = name of individual light or group of lights, value = list of light IDs.
self.lights = {}
for light_id in bridge_state['lights']:
light_name = bridge_state['lights'][light_id]['name']
self.lights[light_name] = [light_id]
remove_later = set()
for group_id in bridge_state['groups']:
group_name = bridge_state['groups'][group_id]['name']
for candidate in self.lights:
if group_name in candidate:
remove_later.add(candidate)
self.lights[group_name] = bridge_state['groups'][group_id]['lights']
# Remove individual lights that have names that are substrings of groups.
for each_light in remove_later:
del self.lights[each_light]
def describe_lights(self) -> list:
"""
Generate a list of the lights in the house, suitable for telling the chatbot about.
"""
return [name for name in self.lights]
def turn_on_or_off(self, light_name: str, on: bool):
if light_name not in self.lights:
print('Light not found.')
return
# Adjust all of the lights in the list.
for light_id in self.lights[light_name]:
self.bridge.set_light(int(light_id), 'on', on)
if on:
print('Turned on ' + light_name)
else:
print('Turned off ' + light_name)
def set_brightness(self, light_name: str, brightness: int):
if light_name not in self.lights:
print('Light not found.')
return
# Adjust all of the lights in the list.
for light_id in self.lights[light_name]:
self.bridge.set_light(int(light_id), {'on': True, 'bri': brightness})
print(light_name + ' set to ' + str(int(100 * brightness / 254)) + '% brightness')
def interpret_response(self, gpt_response: dict):
"""
Interpret the response from the chatbot.
"""
if len(gpt_response) == 0:
return
# print(gpt_response)
if gpt_response['function_name'] == 'turn_on_or_off':
self.turn_on_or_off(light_name=gpt_response['light_name'], on=gpt_response['on'])
elif gpt_response['function_name'] == 'set_brightness':
self.set_brightness(light_name=gpt_response['light_name'], brightness=gpt_response['brightness'])
load_dotenv(verbose=True) # Set operating system environment variables based on contents of .env file.
my_lights = Lights(getenv('BRIDGE_IP'))
lights_list = my_lights.describe_lights()
print('lights_list:', lights_list)
# my_lights.turn_on_or_off(light_name='Master Bedroom', on=True)
# my_lights.set_brightness(light_name='Master Bedroom', brightness=200)
hue_functions = [
{
"name": "turn_on_or_off",
"description": "Turn a Hue light bulb on or off.",
"parameters": {
"type": "object",
"properties": {
"light_name": {
"type": "string",
"description": "The name of the Hue bulb that this function will turn on or off.",
"enum": lights_list
},
"on": {"type": "boolean",
"description": "True if the light should be turned on. False if the light should be turned off."
}
},
"required": ["light_name", "on"]
}
},
{
"name": "set_brightness",
"description": "Change the level of brightness of a Hue bulb. Don't use this function for turning lights off.",
"parameters": {
"type": "object",
"properties": {
"light_name": {
"type": "string",
"description": "The name of the Hue bulb that this function will turn on or off.",
"enum": lights_list
},
"brightness": {"type": "integer",
"description": "The brightness that the bulb should be set to. Expressed as an integer between 0 and 254, where 0 is dark and 254 is maximum brightness.",
"enum": list(range(255))
}
},
"required": ["light_name", "brightness"]
}
}
]
openai.api_key = getenv('OPEN_AI_KEY')
chatgpt = Persona(gpt_model=getenv('OPEN_AI_MODEL'), persona_name='ChatGPT', functions=hue_functions)
mission = '''I'd like you to control the Philips Hue light bulbs in my house.
Only use the set_brightness function for changing brightness. Make sure you use the turn_on_or_off function for actually turning the lights on and off.
Please say "OK" now if you understand.'''
response = 'OK.'
chatgpt.give_mission(mission=mission, response=response)
while True:
inp = input("User input (or 'quit'): ")
if inp == 'quit':
break
resp = chatgpt.chat(prompt=inp)
my_lights.interpret_response(gpt_response=resp)
print('\nTotal tokens used:', chatgpt.cumulative_tokens)
print('Cost incurred (USD):', cost_calc(chatgpt.cumulative_tokens))