-
Notifications
You must be signed in to change notification settings - Fork 375
/
Copy pathscrape_mls_players.R
48 lines (39 loc) · 1.47 KB
/
scrape_mls_players.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
# Load packages
library(XML)
library(plyr)
library(ggvis)
# Scrape the first table of MLS player data and transform it into a data frame
url1 <- "http://www.mlssoccer.com/players"
data1 <- readHTMLTable(url1, stringsAsFactors = FALSE)
data1[[1]] # select the first table
data1 <- as.data.frame(data1)
# clean up the column names
names(data1) <- c("player_num", "position", "player_name", "club", "age", "height",
"weight", "birthplace", "status")
# Delete extra column
data1[10] <- NULL
# Create function to scrape each MLS player site
fetch_data <- function(page_num) {
url2 <- paste0("http://www.mlssoccer.com/players?page=", page_num)
data2 <- readHTMLTable(url2, stringsAsFactors = FALSE)
data2 <- data2[[1]]
data2$page_num <- page_num
data2
}
# Scrape the other MLS player tables
mls_players <- ldply(1:13, fetch_data, .progress="text")
# Delete extra columns
mls_players[11] <- NULL
mls_players[10] <- NULL
# Clean up the column names
names(mls_players) <- c("player_num", "position", "player_name", "club", "age", "height",
"weight", "birthplace", "status")
'''To join two data frames (datasets) vertically, use the rbind function.
The two data frames must have the same variables, but they do not have to
be in the same order.'''
# Join the data frames
df <- rbind(data1, mls_players)
# Reformat the class of numeric columns
df$player_num <- as.numeric(df$player_num)
df$age <- as.numeric(df$age)
df$weight <- as.numeric(df$weight)