-
Notifications
You must be signed in to change notification settings - Fork 9
/
Copy pathloss.py
120 lines (103 loc) · 4.5 KB
/
loss.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
# list all the additional loss functions
import torch
import torch.nn as nn
import torch.nn.functional as F
################## entropy loss (continuous target) #####################
def cross_entropy_soft(pred):
softmax = nn.Softmax(dim=1)
logsoftmax = nn.LogSoftmax(dim=1)
loss = torch.mean(torch.sum(-softmax(pred) * logsoftmax(pred), 1))
return loss
################## attentive entropy loss (source + target) #####################
def attentive_entropy(pred, pred_domain):
softmax = nn.Softmax(dim=1)
logsoftmax = nn.LogSoftmax(dim=1)
# attention weight
entropy = torch.sum(-softmax(pred_domain) * logsoftmax(pred_domain), 1)
weights = 1 + entropy
# attentive entropy
loss = torch.mean(weights * torch.sum(-softmax(pred) * logsoftmax(pred), 1))
return loss
################## ensemble-based loss #####################
# discrepancy loss used in MCD (CVPR 18)
def dis_MCD(out1, out2):
return torch.mean(torch.abs(F.softmax(out1,dim=1) - F.softmax(out2, dim=1)))
################## MMD-based loss #####################
def mmd_linear(f_of_X, f_of_Y):
# Consider linear time MMD with a linear kernel:
# K(f(x), f(y)) = f(x)^Tf(y)
# h(z_i, z_j) = k(x_i, x_j) + k(y_i, y_j) - k(x_i, y_j) - k(x_j, y_i)
# = [f(x_i) - f(y_i)]^T[f(x_j) - f(y_j)]
#
# f_of_X: batch_size * k
# f_of_Y: batch_size * k
delta = f_of_X - f_of_Y
loss = torch.mean(torch.mm(delta, torch.transpose(delta, 0, 1)))
return loss
def guassian_kernel(source, target, kernel_mul=2.0, kernel_num=5, fix_sigma=None):
n_samples = int(source.size()[0])+int(target.size()[0])
total = torch.cat([source, target], dim=0)
total0 = total.unsqueeze(0).expand(int(total.size(0)), int(total.size(0)), int(total.size(1)))
total1 = total.unsqueeze(1).expand(int(total.size(0)), int(total.size(0)), int(total.size(1)))
L2_distance = ((total0-total1)**2).sum(2)
if fix_sigma:
bandwidth = fix_sigma
else:
bandwidth = torch.sum(L2_distance.data) / (n_samples**2-n_samples)
bandwidth /= kernel_mul ** (kernel_num // 2)
bandwidth_list = [bandwidth * (kernel_mul**i) for i in range(kernel_num)]
kernel_val = [torch.exp(-L2_distance / bandwidth_temp) for bandwidth_temp in bandwidth_list]
return sum(kernel_val)
def mmd_rbf(source, target, kernel_mul=2.0, kernel_num=5, fix_sigma=None, ver=2):
batch_size = int(source.size()[0])
kernels = guassian_kernel(source, target, kernel_mul=kernel_mul, kernel_num=kernel_num, fix_sigma=fix_sigma)
loss = 0
if ver==1:
for i in range(batch_size):
s1, s2 = i, (i + 1) % batch_size
t1, t2 = s1 + batch_size, s2 + batch_size
loss += kernels[s1, s2] + kernels[t1, t2]
loss -= kernels[s1, t2] + kernels[s2, t1]
loss = loss.abs_() / float(batch_size)
elif ver==2:
XX = kernels[:batch_size, :batch_size]
YY = kernels[batch_size:, batch_size:]
XY = kernels[:batch_size, batch_size:]
YX = kernels[batch_size:, :batch_size]
loss = torch.mean(XX + YY - XY - YX)
else:
raise ValueError('ver == 1 or 2')
return loss
def JAN(source_list, target_list, kernel_muls=[2.0, 2.0], kernel_nums=[2, 5], fix_sigma_list=[None, None], ver=2):
batch_size = int(source_list[0].size()[0])
layer_num = len(source_list)
joint_kernels = None
for i in range(layer_num):
source = source_list[i]
target = target_list[i]
kernel_mul = kernel_muls[i]
kernel_num = kernel_nums[i]
fix_sigma = fix_sigma_list[i]
kernels = guassian_kernel(source, target,
kernel_mul=kernel_mul, kernel_num=kernel_num, fix_sigma=fix_sigma)
if joint_kernels is not None:
joint_kernels = joint_kernels * kernels
else:
joint_kernels = kernels
loss = 0
if ver==1:
for i in range(batch_size):
s1, s2 = i, (i + 1) % batch_size
t1, t2 = s1 + batch_size, s2 + batch_size
loss += joint_kernels[s1, s2] + joint_kernels[t1, t2]
loss -= joint_kernels[s1, t2] + joint_kernels[s2, t1]
loss = loss.abs_() / float(batch_size)
elif ver==2:
XX = joint_kernels[:batch_size, :batch_size]
YY = joint_kernels[batch_size:, batch_size:]
XY = joint_kernels[:batch_size, batch_size:]
YX = joint_kernels[batch_size:, :batch_size]
loss = torch.mean(XX + YY - XY - YX)
else:
raise ValueError('ver == 1 or 2')
return loss