-
-
Notifications
You must be signed in to change notification settings - Fork 147
/
Copy pathplotting.py
103 lines (98 loc) · 4.05 KB
/
plotting.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
import datetime
import matplotlib.pyplot as plt
from sharedutils import gcount
from sharedutils import openjson
def plot_posts_by_group():
'''
plot the number of posts by group in a barchart
'''
posts = openjson('posts.json')
group_counts = gcount(posts)
group_counts = sorted(group_counts.items(), key=lambda x: x[1], reverse=True)
groups = [x[0] for x in group_counts]
counts = [x[1] for x in group_counts]
plt.bar(groups, counts, color="#000000")
plt.title('posts by group')
plt.xlabel('group name')
plt.xticks(rotation=90)
plt.ylabel('# of posts')
plt.savefig('docs/graphs/postsbygroup.png',dpi=300, bbox_inches="tight", pad_inches=0.1, transparent=True)
plt.clf()
plt.cla()
def plot_posts_by_group_past_7_days():
'''
plot the number of posts by group over the last week in a barchart
'''
posts = openjson('posts.json')
seven_days_ago = datetime.datetime.now() - datetime.timedelta(days=7)
posts = [post for post in posts if post['discovered'] >= seven_days_ago.strftime('%Y-%m-%d')]
group_counts = gcount(posts)
group_counts = sorted(group_counts.items(), key=lambda x: x[1], reverse=True)
groups = [x[0] for x in group_counts]
counts = [x[1] for x in group_counts]
plt.bar(groups, counts, color="#000000")
plt.title('posts by group last 7 days')
plt.xlabel('group name')
plt.xticks(rotation=90)
plt.ylabel('# of posts')
plt.savefig('docs/graphs/postsbygroup7days.png',dpi=300, bbox_inches="tight", pad_inches=0.1, transparent=True)
plt.clf()
plt.cla()
def trend_posts_per_day():
'''
plot the trend of the number of posts per day
'''
posts = openjson('posts.json')
dates = []
for post in posts:
dates.append(post['discovered'][0:10])
# list of duplicate dates should be marged to show a count of posts per day
# i.e ['2021-12-07', '2021-12-07', '2021-12-07', '2021-12-07', '2021-12-07']
# becomes [{'2021-12-07',4}] etc
datecount = {}
for date in dates:
if date in datecount:
datecount[date] += 1
else:
datecount[date] = 1
# remove '2021-09-09' - generic date of import along w/ anything before 2021-08
datecount.pop('2021-09-09', None)
datecount = {k: v for k, v in datecount.items() if k >= '2021-08-01'}
datecount = list(datecount.items())
datecount.sort(key=lambda x: x[0])
dates = [datetime.datetime.strptime(x[0], '%Y-%m-%d').date() for x in datecount]
counts = [x[1] for x in datecount]
plt.plot(dates, counts, color="#000000")
plt.title('posts per day')
plt.xlabel('date')
plt.xticks(rotation=90)
plt.ylabel('# of posts')
plt.savefig('docs/graphs/postsbyday.png',dpi=300, bbox_inches="tight", pad_inches=0.1, transparent=True)
plt.clf()
plt.cla()
def pie_posts_by_group():
'''
plot the number of posts by group in a pie
'''
posts = openjson('posts.json')
group_counts = gcount(posts)
group_counts = sorted(group_counts.items(), key=lambda x: x[1], reverse=True)
groups = [x[0] for x in group_counts]
counts = [x[1] for x in group_counts]
# ignoring the top 10 groups, merge the rest into "other"
topgroups = groups[:10]
topcounts = counts[:10]
othercounts = counts[10:]
othercount = sum(othercounts)
topgroups.append('other')
topcounts.append(othercount)
colours = ['#ffc09f','#ffee93','#fcf5c7','#a0ced9','#adf7b6','#e8dff5','#fce1e4','#fcf4dd','#ddedea','#daeaf6','#79addc','#ffc09f','#ffee93','#fcf5c7','#adf7b6']
plt.pie(topcounts, labels=topgroups, autopct='%1.1f%%', startangle=140, labeldistance=1.1, pctdistance=0.8, colors=colours)
plt.legend(loc='lower center', bbox_to_anchor=(0.5, -0.2), ncol=3)
plt.text(0.5, 0.5, 'total : ' + str(sum(counts)), horizontalalignment='center', verticalalignment='center', transform=plt.gcf().transFigure)
plt.title('posts by group')
plt.savefig('docs/graphs/grouppie.png',dpi=300, bbox_inches="tight", pad_inches=0.1, transparent=True)
plt.clf()
plt.cla()