-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathstm32_buffered_uart.c
458 lines (375 loc) · 14.1 KB
/
stm32_buffered_uart.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
/**
stm32_buffered_uart
provides functionality to receive and send data via UART and DMA by the use of ringbuffers
MIT License
Copyright (c) 2022 Jonas Rahlf
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.
*/
#include "stm32_buffered_uart.h"
#include <stdint.h>
#include <stdatomic.h>
#include <signal.h>
#include <string.h>
#if MAX_NUMBER_BUFFERED_UARTS == 0
#error "MAX_NUMBER_BUFFERED_UARTS must be defined and > 0"
#endif
#ifdef BUFFERED_UART_PROVIDE_HAL_UART_TxCpltCallback
#ifdef USE_HAL_UART_REGISTER_CALLBACKS
#if(USE_HAL_UART_REGISTER_CALLBACKS == 0)
#define BufferedUart_TxCpltCallback HAL_UART_TxCpltCallback
#endif
#endif
#endif
#ifdef BUFFERED_UART_PROVIDE_HAL_UARTEx_RxEventCallback
#ifdef USE_HAL_UART_REGISTER_CALLBACKS
#if(USE_HAL_UART_REGISTER_CALLBACKS == 0)
#define BufferedUart_RxEventCallback HAL_UARTEx_RxEventCallback
#endif
#endif
#endif
#ifdef BUFFERED_UART_PROVIDE_HAL_UART_ErrorCallback
#ifdef USE_HAL_UART_REGISTER_CALLBACKS
#if(USE_HAL_UART_REGISTER_CALLBACKS == 0)
#define BufferedUart_UART_ErrorCallback HAL_UART_ErrorCallback
#endif
#endif
#endif
static struct BufferedUart * s_uarts[MAX_NUMBER_BUFFERED_UARTS];
static int s_numberUartsInUse;
static void BufferedUart_TryStartTransmission(struct BufferedUart * uart);
static bool BufferedUart_TXQueue_Enqueue(struct BufferedUart * uart, const void * data, unsigned int length);
static const void* BufferedUart_TXQueue_Dequeue(const struct BufferedUart * uart, unsigned int * length);
void BufferedUart_TxCpltCallback(UART_HandleTypeDef *huart);
void BufferedUart_RxEventCallback(UART_HandleTypeDef *huart, uint16_t Size);
void BufferedUart_UART_ErrorCallback(UART_HandleTypeDef *huart);
static struct BufferedUart * ContainerOf(const UART_HandleTypeDef * huart);
static inline unsigned int min(unsigned int a, unsigned int b) {
if (a > b) {
return b;
}
return a;
}
static inline void disableHalfCompleteInterrupt(DMA_HandleTypeDef *dmaHandle)
{
__HAL_DMA_DISABLE_IT(dmaHandle, DMA_IT_HT);
}
static void registerBufferedUart(struct BufferedUart * uart)
{
s_uarts[s_numberUartsInUse] = uart;
s_numberUartsInUse++;
}
static void BlockRingbuffer_Init(struct BlockRingbuffer * buffer, void * underlying, unsigned int length)
{
buffer->buf = underlying;
buffer->length = length;
buffer->head = 0;
buffer->tail = 0;
}
static void BlockRingbuffer_Reset(struct BlockRingbuffer * buffer)
{
atomic_signal_fence(memory_order_acquire);
buffer->head = 0;
buffer->tail = 0;
atomic_signal_fence(memory_order_release);
}
static bool BlockRingbuffer_IsValid(const struct BlockRingbuffer * buffer)
{
return buffer != NULL && buffer->buf != NULL && buffer->length > 0 && buffer->length <= 0xFFFF;
}
static inline unsigned int BlockRingbuffer_GetReadAvailable(const struct BlockRingbuffer * buffer)
{
atomic_signal_fence(memory_order_acquire);
return buffer->head - buffer->tail;
}
static inline unsigned int BlockRingbuffer_GetWriteAvailable(const struct BlockRingbuffer * buffer)
{
return buffer->length - BlockRingbuffer_GetReadAvailable(buffer);
}
static inline unsigned int BlockRingbuffer_GetLength(const struct BlockRingbuffer * buffer)
{
#ifdef BUFFERED_UART_FIXED_BUFFER_SIZE
return BUFFERED_UART_FIXED_BUFFER_SIZE;
#endif
return buffer->length;
}
HAL_StatusTypeDef BufferedUart_Init(struct BufferedUart * bufferedUart, UART_HandleTypeDef * uart, enum BufferedUartMode mode, void *txBuffer, unsigned int txSize, void *rxBuffer, unsigned int rxSize)
{
if (s_numberUartsInUse == MAX_NUMBER_BUFFERED_UARTS) {
return HAL_ERROR;
}
if (bufferedUart == NULL || uart == NULL) {
return HAL_ERROR;
}
if (mode == BUFFERED_UART_TX || mode == BUFFERED_UART_TX_RX) {
struct BlockRingbuffer buffer;
BlockRingbuffer_Init(&buffer, txBuffer, txSize);
bufferedUart->txqueue = buffer;
if (!BlockRingbuffer_IsValid(&bufferedUart->txqueue)) {
return HAL_ERROR;
}
#if (USE_HAL_UART_REGISTER_CALLBACKS == 1)
HAL_StatusTypeDef status = HAL_UART_RegisterCallback(uart, HAL_UART_TX_COMPLETE_CB_ID, BufferedUart_TxCpltCallback);
if (status != HAL_OK) {
return status;
}
#endif
}
if (mode == BUFFERED_UART_RX || mode == BUFFERED_UART_TX_RX) {
struct BlockRingbuffer buffer;
BlockRingbuffer_Init(&buffer, rxBuffer, rxSize);
bufferedUart->rxqueue = buffer;
if (!BlockRingbuffer_IsValid(&bufferedUart->rxqueue)) {
return HAL_ERROR;
}
#if (USE_HAL_UART_REGISTER_CALLBACKS == 1)
HAL_StatusTypeDef status = HAL_UART_RegisterRxEventCallback(uart, BufferedUart_RxEventCallback);
if (status != HAL_OK) {
return status;
}
#endif
}
#if (USE_HAL_UART_REGISTER_CALLBACKS == 1)
HAL_StatusTypeDef status = HAL_UART_RegisterCallback(uart, HAL_UART_ERROR_CB_ID, BufferedUart_UART_ErrorCallback);
if (status != HAL_OK) {
return status;
}
#endif
registerBufferedUart(bufferedUart);
bufferedUart->uart = uart;
bufferedUart->lastSendBlockSize = 0;
return HAL_OK;
}
HAL_StatusTypeDef BufferedUart_StartReception(struct BufferedUart *uart)
{
if (!BlockRingbuffer_IsValid(&uart->rxqueue)) {
return HAL_ERROR;
}
BlockRingbuffer_Reset(&uart->rxqueue);
return HAL_UARTEx_ReceiveToIdle_DMA(uart->uart, (uint8_t*)uart->rxqueue.buf, uart->rxqueue.length);
}
HAL_StatusTypeDef BufferedUart_StopReception(struct BufferedUart *uart)
{
HAL_UART_AbortReceive_IT(uart->uart);
return HAL_DMA_Abort(uart->uart->hdmarx);
}
struct BufferedUart * ContainerOf(const UART_HandleTypeDef * huart)
{
#if MAX_NUMBER_BUFFERED_UARTS == 1
return s_uarts[0];
#else
for (int i = 0; i < s_numberUartsInUse; i++) {
if (s_uarts[i]->uart == huart) {
return s_uarts[i];
}
}
return NULL;
#endif
}
void BufferedUart_TxCpltCallback(UART_HandleTypeDef *huart)
{
struct BufferedUart * bufferedUart = ContainerOf(huart);
if (bufferedUart == NULL) {
// error: the given uart handle was not registered before via BufferedUart_Init
Error_Handler();
}
atomic_signal_fence(memory_order_acquire);
bufferedUart->txqueue.tail += bufferedUart->lastSendBlockSize;
atomic_signal_fence(memory_order_release);
BufferedUart_TryStartTransmission(bufferedUart);
}
void BufferedUart_RxEventCallback(UART_HandleTypeDef *huart, uint16_t Size)
{
struct BufferedUart * bufferedUart = ContainerOf(huart);
if (bufferedUart == NULL) {
// error: the given uart handle was not registered before via buffered_uart_init
Error_Handler();
}
atomic_signal_fence(memory_order_acquire);
bufferedUart->rxqueue.head = Size;
atomic_signal_fence(memory_order_release);
enum DataHandledResult handled = BUFFERED_UART_DATA_NOT_HANDLED;
if (bufferedUart->DataReceivedHandler != NULL) {
unsigned int length = BlockRingbuffer_GetReadAvailable(&bufferedUart->rxqueue);
// length would be 0 if a UART IDLE event happens exactly after (HALF) DMA COMPLETE interrupt
if (length > 0) {
handled = bufferedUart->DataReceivedHandler(bufferedUart->rxqueue.buf + bufferedUart->rxqueue.tail, length);
}
}
if (handled == BUFFERED_UART_DATA_HANDLED) {
atomic_signal_fence(memory_order_acquire);
bufferedUart->rxqueue.tail = bufferedUart->rxqueue.head;
atomic_signal_fence(memory_order_release);
}
if (bufferedUart->rxqueue.tail == bufferedUart->rxqueue.length) {
atomic_signal_fence(memory_order_acquire);
bufferedUart->rxqueue.tail = 0;
atomic_signal_fence(memory_order_release);
}
}
/// the current strategy is to just restart the reception on error
/// transmission will start automatically the next time something is enqueued
void BufferedUart_UART_ErrorCallback(UART_HandleTypeDef *huart)
{
struct BufferedUart * bufferedUart = ContainerOf(huart);
if (bufferedUart == NULL) {
return;
}
BufferedUart_StopReception(bufferedUart);
HAL_StatusTypeDef result = BufferedUart_StartReception(bufferedUart);
if (result != HAL_OK) {
Error_Handler();
}
}
/**
* Transmit data
* The data is first copied into an internal buffer and then immediately send as soon as the
* uart peripheral becomes available
* @note if this is called from interrupt and normal context (reentrant), BUFFERED_UART_REENTRANT must be defined
* if BUFFERED_UART_REENTRANT is defined, all interrupts are disabled in this function (default reentrant strategy)
* @param[in] uart
* @param[in] data
* @param[in] length
* @return HAL_StatusTypeDef
*/
HAL_StatusTypeDef BufferedUart_Transmit(struct BufferedUart *uart, const void * data, unsigned int length)
{
BUFFERED_UART_REENTRANT_ENTER_CRITICAL_SECTION();
HAL_StatusTypeDef result = HAL_OK;
bool ok = BufferedUart_TXQueue_Enqueue(uart, data, length);
if (!ok) {
result = HAL_BUSY;
}
BufferedUart_TryStartTransmission(uart);
BUFFERED_UART_REENTRANT_EXIT_CRITICAL_SECTION();
return result;
}
/**
* Transmit data with a maximum timeout
* The data is first copied into an internal buffer and then immediately send as soon as the
* uart peripheral becomes available
* @note the timeout parameter allows to call this function with a data length greater than the internal buffer size.
* Note that in this case the sent data can be incomplete if the timeout occurs before all data is sent
* @note if this is called from interrupt and normal context (reentrant), BUFFERED_UART_REENTRANT must be defined
* if BUFFERED_UART_REENTRANT is defined, all interrupts are disabled in this function (default reentrant strategy)
* @param[in] uart
* @param[in] data
* @param[in] length
* @return HAL_StatusTypeDef
*/
HAL_StatusTypeDef BufferedUart_TransmitTimed(struct BufferedUart *uart, const void * data, unsigned int length, unsigned int timeoutMs)
{
if (timeoutMs == 0) {
return BufferedUart_Transmit(uart, data, length);
}
uint32_t start = HAL_GetTick();
HAL_StatusTypeDef result = HAL_OK;
while (length > 0) {
if (HAL_GetTick() - start > timeoutMs) {
result = HAL_TIMEOUT;
break;
}
unsigned int enqueueSize = min(length, uart->txqueue.length);
result = BufferedUart_Transmit(uart, data, enqueueSize);
if (result == HAL_OK) {
length -= enqueueSize;
data += length;
}
}
return result;
}
bool BufferedUart_TXQueue_Enqueue(struct BufferedUart * uart, const void * data, unsigned int length)
{
if (length > BlockRingbuffer_GetWriteAvailable(&uart->txqueue)) {
return false;
}
atomic_signal_fence(memory_order_acquire);
unsigned int head = uart->txqueue.head;
unsigned int queueMaxSize = BlockRingbuffer_GetLength(&uart->txqueue);
unsigned int sizeTillWrapAround = queueMaxSize - (head % queueMaxSize);
unsigned int firstLength = min(length, sizeTillWrapAround);
unsigned int secondLength = length - firstLength;
// first part
unsigned int insertIndex = head % queueMaxSize;
memcpy(uart->txqueue.buf + insertIndex, data, firstLength);
head += firstLength;
// second part after wrap around
memcpy(uart->txqueue.buf, data + firstLength, secondLength);
head += secondLength;
atomic_signal_fence(memory_order_acquire);
uart->txqueue.head = head;
atomic_signal_fence(memory_order_release);
return true;
}
const void * BufferedUart_TXQueue_Dequeue(const struct BufferedUart *uart, unsigned int * length)
{
unsigned int txAvailable = BlockRingbuffer_GetReadAvailable(&uart->txqueue);
if (txAvailable == 0) {
*length = 0;
return NULL;
}
atomic_signal_fence(memory_order_acquire);
unsigned int tail = uart->txqueue.tail;
unsigned int queueMaxSize = BlockRingbuffer_GetLength(&uart->txqueue);
unsigned int sizeTillWrapAround = queueMaxSize - (tail % queueMaxSize);
unsigned int dequeueLength = min(txAvailable, sizeTillWrapAround);
*length = dequeueLength;
const void * dequeueData = uart->txqueue.buf + (tail % queueMaxSize);
return dequeueData;
}
void BufferedUart_TryStartTransmission(struct BufferedUart *uart)
{
if (BufferedUart_IsTXBusy(uart)) {
return;
}
unsigned int length;
const void * data = BufferedUart_TXQueue_Dequeue(uart, &length);
if (length > 0) {
uart->lastSendBlockSize = length;
HAL_StatusTypeDef result = HAL_UART_Transmit_DMA(uart->uart, (uint8_t*)data, length);
disableHalfCompleteInterrupt(uart->uart->hdmatx); // small optimization, disable unused interrupt
if (result != HAL_OK) {
Error_Handler();
}
}
}
unsigned int BufferedUart_Dequeue(struct BufferedUart *uart, void * buffer, unsigned int maximumLength)
{
uint32_t queueSize = BlockRingbuffer_GetReadAvailable(&uart->rxqueue);
if (queueSize == 0 || maximumLength == 0) {
return 0;
}
atomic_signal_fence(memory_order_acquire);
unsigned int tail = uart->rxqueue.tail;
unsigned int dequeueLength = min(queueSize, maximumLength);
unsigned int queueMaxSize = BlockRingbuffer_GetLength(&uart->rxqueue);
unsigned int sizeTillWrapAround = queueMaxSize - (tail % queueMaxSize);
unsigned int firstLength = min(dequeueLength, sizeTillWrapAround);
unsigned int secondLength = dequeueLength - firstLength;
// first part
const char *dequeueData = uart->rxqueue.buf + (tail % queueMaxSize);
memcpy(buffer, dequeueData, firstLength);
tail += firstLength;
// second part after wrap around
dequeueData = uart->rxqueue.buf;
char * dstPtr = ((char*)buffer) + firstLength;
memcpy(dstPtr, dequeueData, secondLength);
tail += secondLength;
atomic_signal_fence(memory_order_acquire);
uart->rxqueue.tail = tail;
atomic_signal_fence(memory_order_release);
return dequeueLength;
}