-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain_with_resnet101.py
177 lines (140 loc) · 6.53 KB
/
train_with_resnet101.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
import os
import time
import torch
import argparse
import torchvision
import pandas as pd
import numpy as np
import albumentations as A
from dataset.transform import PhotoMetricDistortion, MixUp, Mosaic
from loss.averager import Averager
from dataset.wheat import WheatDataset,WheatTestDataset
from utils.Network_utils import get_logger,summary_args,Timer,wrap_color,info
from torch.utils.data import DataLoader, Dataset
from albumentations.pytorch.transforms import ToTensorV2
from torchvision.models.detection.faster_rcnn import FastRCNNPredictor
from torchvision.models.detection import FasterRCNN
from torchvision.models.detection.backbone_utils import resnet_fpn_backbone
from torchvision.models.detection.rpn import AnchorGenerator
from torch.utils.data.sampler import SequentialSampler
DIR_INPUT = '/data1/jliang_data/dataset/wheat'
DIR_TRAIN = f'{DIR_INPUT}/train'
DIR_TEST = f'{DIR_INPUT}/test'
os.environ["CUDA_VISIBLE_DEVICES"] = '2'
# Albumentations
def get_train_transform():
train_pipline = [
PhotoMetricDistortion(
brightness_delta=32,
contrast_range=(0.5, 1.5),
saturation_range=(0.5, 1.5),
hue_delta=18),
# MixUp(p=0.5, mode=1),
# Mosaic(p=0.2),
A.Compose([
A.Flip(p=0.5),
A.ToGray(p=0.01),
A.Cutout(num_holes=8, max_h_size=64, max_w_size=64, fill_value=0, p=0.5),
A.RandomCrop(height=1000, width=1000, p=0.5),
ToTensorV2(p=1.0)
], bbox_params={'format': 'pascal_voc', 'label_fields': ['labels']})
]
return train_pipline
def get_valid_transform():
return A.Compose([
ToTensorV2(p=1.0)
], bbox_params={'format': 'pascal_voc', 'label_fields': ['labels']})
train_dataset = WheatDataset(DIR_INPUT, get_train_transform())
def collate_fn(batch):
return tuple(zip(*batch))
def fasterrcnn_resnet101_fpn(pretrained=False, progress=True,
num_classes=91, pretrained_backbone=True,
trainable_backbone_layers=3, **kwargs):
assert trainable_backbone_layers <= 5 and trainable_backbone_layers >= 0
# dont freeze any layers if pretrained model or backbone is not used
if not (pretrained or pretrained_backbone):
trainable_backbone_layers = 5 #TODO: whta's mean of this trainable_backbone_layers
if pretrained:
# no need to download the backbone if pretrained is set
pretrained_backbone = False
backbone = resnet_fpn_backbone('resnet152', pretrained_backbone)
model = FasterRCNN(backbone, num_classes, **kwargs)
return model
def initialize_model():
model = fasterrcnn_resnet101_fpn(pretrained=False, min_size=[512, 800, 1024], max_size=1024,
image_mean=[123.675, 116.28, 103.53], image_std=[58.395, 57.12, 57.375])
in_features = model.roi_heads.box_predictor.cls_score.in_features
model.roi_heads.box_predictor = FastRCNNPredictor(in_features, 2)
return model
def train(args):
t = time.strftime("-%Y-%m-%d-%H-%M-%S", time.localtime())
name = 'Log' + t
logger = get_logger('log', name)
summary_args(logger, vars(args), 'green')
train_data_loader = DataLoader(
train_dataset,
batch_size=args.batch_size, # 16
shuffle=args.shuffle, # set it to True??
num_workers=4,
collate_fn=collate_fn # any diff with default???
)
model = initialize_model()
# # load a model; pre-trained on COCO
# model = torchvision.models.detection.fasterrcnn_resnet50_fpn(pretrained=True,
# min_size=[512, 800, 1024], max_size=1024,
# image_mean=[123.675, 116.28, 103.53], image_std=[58.395, 57.12, 57.375])
# num_classes = 2 # 1 class (wheat) + background
#
# # get number of input features for the classifier
# in_features = model.roi_heads.box_predictor.cls_score.in_features
#
# # replace the pre-trained head with a new one
# model.roi_heads.box_predictor = FastRCNNPredictor(in_features, num_classes)
device = torch.device('cuda') if torch.cuda.is_available() else torch.device('cpu')
model.to(device)
params = [p for p in model.parameters() if p.requires_grad]
optimizer = torch.optim.SGD(params, lr=args.lr, momentum=args.momentum, weight_decay=args.weight_decay)
lr_scheduler = torch.optim.lr_scheduler.MultiStepLR(optimizer, milestones=[25, 29], gamma=0.1)
# lr_scheduler = torch.optim.lr_scheduler.StepLR(optimizer, step_size=5, gamma=0.5)
# lr_scheduler = None
num_epochs = args.num_epoch
loss_hist = Averager()
itr = 1
for epoch in range(num_epochs):
loss_hist.reset()
Timer.record()
for images, targets, image_ids in train_data_loader:
images = list(image.to(device) for image in images)
targets = [{k: v.to(device) for k, v in t.items()} for t in targets]
loss_dict = model(images, targets)
losses = sum(loss for loss in loss_dict.values())
loss_value = losses.item()
loss_hist.send(loss_value)
optimizer.zero_grad()
losses.backward()
optimizer.step()
if itr % 50 == 0:
Timer.record()
# print(f"Iteration #{itr} loss: {loss_value}")
now_lr = optimizer.state_dict()['param_groups'][0]['lr']
msg = 'Epoch={}, Batch={}, lr={}, loss={:.4f}, speed={:.1f} b/s'
msg = msg.format(epoch, itr, now_lr, loss_value, 50 / Timer.interval())
info(logger, msg)
itr += 1
# update the learning rate
if lr_scheduler is not None:
lr_scheduler.step()
print(f"Epoch #{epoch} loss: {loss_hist.value}")
torch.save(model.state_dict(), 'fasterrcnn_resnet152_fpn' + t + '.pth')
if __name__ == "__main__":
parse = argparse.ArgumentParser()
# LR setting
parse.add_argument('--lr', type=float, default=0.00125)
parse.add_argument('--momentum', type=float, default=0.9)
parse.add_argument('--weight-decay', type=float, default=0.0001)
# Train setting
parse.add_argument('--num-epoch', type=int, default=30)
parse.add_argument('--batch-size', type=int, default=4)
parse.add_argument('--shuffle', type=bool, default=True)
args = parse.parse_args()
train(args)