forked from pytorch/benchmark
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathinstall.py
114 lines (104 loc) · 4.88 KB
/
install.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
import argparse
import subprocess
import os
import sys
import yaml
import tarfile
from utils import TORCH_DEPS, proxy_suggestion, get_pkg_versions, _test_https
from pathlib import Path
REPO_ROOT = Path(__file__).parent
def s3_checkout():
S3_URL_BASE = "https://ossci-datasets.s3.amazonaws.com/torchbench"
data_dir = REPO_ROOT.joinpath("torchbenchmark", "data")
model_dir = REPO_ROOT.joinpath("torchbenchmark", "models")
index_file = REPO_ROOT.joinpath("torchbenchmark", "data", "index.yaml")
import requests
with open(index_file, "r") as ind:
index = yaml.safe_load(ind)
for input_file in index["INPUT_TARBALLS"]:
s3_url = f"{S3_URL_BASE}/data/{input_file}"
r = requests.get(s3_url, allow_redirects=True)
with open(str(data_dir.joinpath(input_file)), "wb") as output:
print(f"Checking out {s3_url} to {data_dir.joinpath(input_file)}")
output.write(r.content)
for model_file in index["MODEL_PKLS"]:
s3_url = f"{S3_URL_BASE}/models/{model_file}"
r = requests.get(s3_url, allow_redirects=True)
with open(str(model_dir.joinpath(model_file)), "wb") as output:
print(f"Checking out {s3_url} to {model_dir.joinpath(model_file)}")
output.write(r.content)
def decompress_input():
tb_dir = os.path.dirname(os.path.realpath(__file__))
data_dir = os.path.join(tb_dir, "torchbenchmark", "data")
# Hide decompressed file in .data directory so that they won't be checked in
decompress_dir = os.path.join(data_dir, ".data")
os.makedirs(decompress_dir, exist_ok=True)
# Decompress every tar.gz file
for tarball in filter(lambda x: x.endswith(".tar.gz"), os.listdir(data_dir)):
tarball_path = os.path.join(data_dir, tarball)
print(f"decompressing input tarball: {tarball}...", end="", flush=True)
tar = tarfile.open(tarball_path)
tar.extractall(path=decompress_dir)
tar.close()
print("OK")
def pip_install_requirements(requirements_txt="requirements.txt"):
if not _test_https():
print(proxy_suggestion)
sys.exit(-1)
try:
subprocess.run([sys.executable, '-m', 'pip', 'install', '-q', '-r', requirements_txt],
check=True, stdout=subprocess.PIPE, stderr=subprocess.STDOUT)
except subprocess.CalledProcessError as e:
return (False, e.output)
except Exception as e:
return (False, e)
return True, None
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument("models", nargs='*', default=[],
help="Specify one or more models to install. If not set, install all models.")
parser.add_argument("--test-mode", action="store_true", help="Run in test mode and check package versions")
parser.add_argument("--canary", action="store_true", help="Install canary model.")
parser.add_argument("--continue_on_fail", action="store_true")
parser.add_argument("--verbose", "-v", action="store_true")
parser.add_argument("--component", choices=["distributed"], help="Install requirements for optional components.")
args = parser.parse_args()
os.chdir(os.path.realpath(os.path.dirname(__file__)))
print(f"checking packages {', '.join(TORCH_DEPS)} are installed...", end="", flush=True)
try:
versions = get_pkg_versions(TORCH_DEPS)
except ModuleNotFoundError as e:
print("FAIL")
print(f"Error: Users must first manually install packages {TORCH_DEPS} before installing the benchmark.")
sys.exit(-1)
print("OK")
print("checking out input files from Amazon S3 ...", end="", flush=True)
s3_checkout()
print("OK")
decompress_input()
if args.component == "distributed":
success, errmsg = pip_install_requirements(requirements_txt="torchbenchmark/util/distributed/requirements.txt")
if not success:
print("Failed to install torchbenchmark distributed requirements:")
print(errmsg)
if not args.continue_on_fail:
sys.exit(-1)
sys.exit(0)
success, errmsg = pip_install_requirements()
if not success:
print("Failed to install torchbenchmark requirements:")
print(errmsg)
if not args.continue_on_fail:
sys.exit(-1)
new_versions = get_pkg_versions(TORCH_DEPS)
if versions != new_versions:
print(f"The torch packages are re-installed after installing the benchmark deps. \
Before: {versions}, after: {new_versions}")
sys.exit(-1)
from torchbenchmark import setup
success &= setup(models=args.models, verbose=args.verbose, continue_on_fail=args.continue_on_fail, test_mode=args.test_mode, allow_canary=args.canary)
if not success:
if args.continue_on_fail:
print("Warning: some benchmarks were not installed due to failure")
else:
raise RuntimeError("Failed to complete setup")