-
Notifications
You must be signed in to change notification settings - Fork 666
/
Copy path05_pandas.py
426 lines (320 loc) · 16.4 KB
/
05_pandas.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
'''
CLASS: Pandas for Data Exploration, Analysis, and Visualization
MovieLens 100k data:
main page: http://grouplens.org/datasets/movielens/
data dictionary: http://files.grouplens.org/datasets/movielens/ml-100k-README.txt
files: u.user, u.data, u.item
WHO alcohol consumption data:
article: http://fivethirtyeight.com/datalab/dear-mona-followup-where-do-people-drink-the-most-beer-wine-and-spirits/
original data: https://github.com/fivethirtyeight/data/tree/master/alcohol-consumption
files: drinks.csv (with additional 'continent' column)
'''
# imports
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
'''
Reading Files, Summarizing, Selecting, Filtering, Sorting, Detecting Duplicates
'''
# can read a file directly from a URL
pd.read_table('https://raw.githubusercontent.com/justmarkham/DAT4/master/data/u.user')
# read 'u.user' into 'users'
u_cols = ['user_id', 'age', 'gender', 'occupation', 'zip_code']
users = pd.read_table('../data/u.user', header=None, sep='|', names=u_cols, index_col='user_id', dtype={'zip_code':str})
# examine the users data
users # print the first 30 and last 30 rows
type(users) # DataFrame
users.head() # print the first 5 rows
users.tail() # print the last 5 rows
users.describe() # summarize all numeric columns
users.index # "the index" (aka "the labels")
users.columns # column names (which is "an index")
users.dtypes # data types of each column
users.shape # number of rows and columns
users.values # underlying numpy array
users.info() # concise summary (includes memory usage as of pandas 0.15.0)
# select a column
users['gender'] # select one column
type(users['gender']) # Series
users.gender # select one column using the DataFrame attribute
# summarize a single column
users.gender.describe() # describe the gender Series (non-numeric)
users.gender.value_counts() # for each gender, count number of occurrences
# summarize all columns (new in pandas 0.15.0)
users.describe(include='all') # describe all Series
users.describe(include=['object']) # limit to one (or more) types
# select multiple columns
users[['age', 'gender']] # select two columns
my_cols = ['age', 'gender'] # or, create a list...
users[my_cols] # ...and use that list to select columns
type(users[my_cols]) # DataFrame
# simple logical filtering
users[users.age < 20] # only show users with age < 20
young_bool = users.age < 20 # or, create a Series of booleans...
users[young_bool] # ...and use that Series to filter rows
users[users.age < 20].occupation # select one column from the filtered results
# advanced logical filtering
users[users.age < 20][['age', 'occupation']] # select multiple columns
users[(users.age < 20) & (users.gender=='M')] # use multiple conditions
users[users.occupation.isin(['doctor', 'lawyer'])] # filter specific values
# sorting
users.age.order() # only works for a Series
users.sort_index() # sort rows by label
users.sort_index(by='age') # sort rows by a specific column
users.sort_index(by='age', ascending=False) # use descending order instead
users.sort_index(by=['occupation', 'age']) # sort by multiple columns
# detecting duplicate rows
users.duplicated() # Series of booleans (True if a row is identical to a previous row)
users.duplicated().sum() # count of duplicates
users[users.duplicated()] # only show duplicates
users.drop_duplicates() # drop duplicate rows
users.age.duplicated() # check a single column for duplicates
users.duplicated(['age', 'gender', 'zip_code']).sum() # specify columns for finding duplicates
'''
EXERCISE: Working with drinks data
'''
# Read drinks.csv into a DataFrame called 'drinks' (use the default index)
drinks = pd.read_table('../data/drinks.csv', sep=',')
drinks = pd.read_csv('../data/drinks.csv') # equivalent
# Print the first 10 rows
drinks.head(10)
# Examine the data types of all columns
drinks.dtypes
drinks.info()
# Print the 'beer_servings' Series
drinks.beer_servings
drinks['beer_servings']
# Calculate the average 'beer_servings' for the entire dataset
drinks.describe() # summarize all numeric columns
drinks.beer_servings.describe() # summarize only the 'beer_servings' Series
drinks.beer_servings.mean() # only calculate the mean
# Print all columns, but only show rows where the country is in Europe
drinks[drinks.continent=='EU']
# Calculate the average 'beer_servings' for all of Europe
drinks[drinks.continent=='EU'].beer_servings.mean()
# Only show European countries with 'wine_servings' greater than 300
drinks[(drinks.continent=='EU') & (drinks.wine_servings > 300)]
# Determine which 10 countries have the highest 'total_litres_of_pure_alcohol'
drinks.sort_index(by='total_litres_of_pure_alcohol').tail(10)
# Determine which country has the highest value for 'beer_servings'
drinks[drinks.beer_servings==drinks.beer_servings.max()].country
# Count the number of occurrences of each 'continent' value and see if it looks correct
drinks.continent.value_counts()
'''
Handling Missing Values
'''
# turn off the missing value filter
pd.read_csv('../data/drinks.csv', na_filter=False)
# keep the missing values (for demonstration purposes)
drinks = pd.read_csv('../data/drinks.csv')
# set more values to NaN (for demonstration purposes)
drinks.loc[192, 'beer_servings':'wine_servings'] = np.nan
# missing values are often just excluded
drinks.describe(include='all') # excludes missing values
drinks.continent.value_counts(dropna=False) # includes missing values (new in pandas 0.14.1)
# find missing values in a Series
drinks.continent.isnull() # True if NaN, False otherwise
drinks.continent.notnull() # False if NaN, True otherwise
drinks[drinks.continent.notnull()] # only show rows where continent is not NaN
drinks.continent.isnull().sum() # count the missing values
# find missing values in a DataFrame
drinks.isnull() # DataFrame of booleans
drinks.isnull().sum() # calculate the sum of each column
# drop missing values
drinks.dropna() # drop a row if ANY values are missing
drinks.dropna(how='all') # drop a row only if ALL values are missing
# fill in missing values
drinks.continent.fillna(value='NA') # does not modify 'drinks'
drinks.continent.fillna(value='NA', inplace=True) # modifies 'drinks' in-place
drinks.fillna(drinks.mean()) # fill in missing values using mean
'''
More File Reading and File Writing
'''
# read drinks.csv into a list of lists
import csv
with open('../data/drinks.csv', 'rU') as f:
header = csv.reader(f).next()
data = [row for row in csv.reader(f)]
# convert into a DataFrame
drinks = pd.DataFrame(data, columns=header)
drinks.isnull().sum() # no automatic handling of missing values
drinks.dtypes # type is 'object' because list elements were strings
# fix data types of numeric columns
num_cols = drinks.columns[1:5] # create list of numeric columns
drinks[num_cols] = drinks[num_cols].astype('float') # convert them to type 'float'
# write a DataFrame out to a CSV
drinks.to_csv('../data/drinks_updated.csv') # index is used as first column
drinks.to_csv('../data/drinks_updated.csv', index=False) # ignore index
'''
Adding, Renaming, and Removing Columns
'''
# reset the DataFrame
drinks = pd.read_csv('../data/drinks.csv', na_filter=False)
# add a new column as a function of existing columns
# note: can't (usually) assign to an attribute (e.g., 'drinks.total_servings')
drinks['total_servings'] = drinks.beer_servings + drinks.spirit_servings + drinks.wine_servings
drinks['alcohol_mL'] = drinks.total_litres_of_pure_alcohol * 1000
drinks.head()
# alternative method: default is column sums, 'axis=1' does row sums instead
drinks['total_servings'] = drinks.loc[:, 'beer_servings':'wine_servings'].sum(axis=1)
# rename a column
drinks.rename(columns={'total_litres_of_pure_alcohol':'alcohol_litres'}, inplace=True)
# hide a column (temporarily)
drinks.drop(['alcohol_mL'], axis=1) # use 'axis=0' to drop rows instead
drinks[drinks.columns[:-1]] # slice 'columns' attribute like a list
# delete a column (permanently)
del drinks['alcohol_mL']
'''
Split-Apply-Combine
'''
# for each continent, calculate mean beer servings
drinks.groupby('continent').beer_servings.mean()
# for each continent, calculate mean of all numeric columns
drinks.groupby('continent').mean()
# for each continent, count number of occurrences
drinks.groupby('continent').continent.count()
drinks.continent.value_counts()
'''
Plotting
'''
# bar plot of number of countries in each continent
drinks.continent.value_counts().plot(kind='bar', title='Countries per Continent')
plt.xlabel('Continent')
plt.ylabel('Count')
plt.show() # show plot window (if it doesn't automatically appear)
plt.savefig('countries_per_continent.png') # save plot to file
# bar plot of average number of beer servings (per adult per year) by continent
drinks.groupby('continent').beer_servings.mean().plot(kind='bar')
plt.ylabel('Average Number of Beer Servings Per Year')
# histogram of beer servings (shows the distribution of a numeric column)
drinks.beer_servings.hist(bins=20)
plt.xlabel('Beer Servings')
plt.ylabel('Frequency')
# density plot of beer servings (smooth version of a histogram)
drinks.beer_servings.plot(kind='density', xlim=(0,500))
plt.xlabel('Beer Servings')
# grouped histogram of beer servings (shows the distribution for each group)
drinks.beer_servings.hist(by=drinks.continent)
drinks.beer_servings.hist(by=drinks.continent, sharex=True)
drinks.beer_servings.hist(by=drinks.continent, sharex=True, sharey=True)
drinks.beer_servings.hist(by=drinks.continent, layout=(2, 3)) # change layout (new in pandas 0.15.0)
# boxplot of beer servings by continent (shows five-number summary and outliers)
drinks.boxplot(column='beer_servings', by='continent')
# scatterplot of beer servings versus wine servings
drinks.plot(kind='scatter', x='beer_servings', y='wine_servings', alpha=0.3)
# same scatterplot, except point color varies by 'spirit_servings'
# note: must use 'c=drinks.spirit_servings' prior to pandas 0.15.0
drinks.plot(kind='scatter', x='beer_servings', y='wine_servings', c='spirit_servings', colormap='Blues')
# same scatterplot, except all European countries are colored red
colors = np.where(drinks.continent=='EU', 'r', 'b')
drinks.plot(x='beer_servings', y='wine_servings', kind='scatter', c=colors)
# scatterplot matrix of all numerical columns
pd.scatter_matrix(drinks)
'''
Advanced Filtering (of rows) and Selecting (of columns)
'''
# loc: filter rows by LABEL, and select columns by LABEL
users.loc[1] # row with label 1
users.loc[1:3] # rows with labels 1 through 3
users.loc[1:3, 'age':'occupation'] # rows 1-3, columns 'age' through 'occupation'
users.loc[:, 'age':'occupation'] # all rows, columns 'age' through 'occupation'
users.loc[[1,3], ['age','gender']] # rows 1 and 3, columns 'age' and 'gender'
# iloc: filter rows by POSITION, and select columns by POSITION
users.iloc[0] # row with 0th position (first row)
users.iloc[0:3] # rows with positions 0 through 2 (not 3)
users.iloc[0:3, 0:3] # rows and columns with positions 0 through 2
users.iloc[:, 0:3] # all rows, columns with positions 0 through 2
users.iloc[[0,2], [0,1]] # 1st and 3rd row, 1st and 2nd column
# mixing: select columns by LABEL, then filter rows by POSITION
users.age[0:3]
users[['age', 'gender', 'occupation']][0:3]
'''
Joining Data
'''
# read 'u.item' into 'movies'
m_cols = ['movie_id', 'title']
movies = pd.read_table('../data/u.item', header=None, names=m_cols, sep='|', usecols=[0, 1])
movies.head()
movies.shape
# read 'u.data' into 'ratings'
r_cols = ['user_id', 'movie_id', 'rating', 'unix_timestamp']
ratings = pd.read_table('../data/u.data', header=None, names=r_cols, sep='\t')
ratings.head()
ratings.shape
# merge 'movies' and 'ratings' (inner join on 'movie_id')
movie_ratings = pd.merge(movies, ratings)
movie_ratings.head()
movie_ratings.shape
'''
Further Exploration of MovieLens Data
'''
# for each occupation, calculate mean age
users.groupby('occupation').age.mean()
users.groupby('occupation').age.agg(np.mean) # equivalent
# for each occupation, calculate age range
users.groupby('occupation').age.agg([np.min, np.max])
users.groupby('occupation').age.agg([np.min, np.max]).sort('amin') # sort by minimum
users.groupby('occupation').age.agg(lambda x: x.max() - x.min()) # calculate a single value
# for each occupation/gender combination, calculate mean age
users.groupby(['occupation', 'gender']).age.mean()
users.groupby(['gender', 'occupation']).age.mean()
# for each movie, count number of ratings
movie_ratings.title.value_counts()
# for each movie, calculate mean rating
movie_ratings.groupby('title').rating.mean().order(ascending=False)
# for each movie, count number of ratings and calculate mean rating
movie_ratings.groupby('title').rating.count()
movie_ratings.groupby('title').rating.mean()
movie_stats = movie_ratings.groupby('title').rating.agg([np.size, np.mean])
movie_stats.head()
# limit results to movies with more than 100 ratings
movie_stats[movie_stats['size'] > 100].sort_index(by='mean')
'''
Other Useful Features
'''
# limit which rows are read when reading in a file
pd.read_csv('../data/drinks.csv', nrows=10) # only read first 10 rows
pd.read_csv('../data/drinks.csv', skiprows=[1, 2]) # skip the first two rows of data
# replace existing column headers when reading in a file
col_names = ['country', 'beer', 'spirit', 'wine', 'alcohol', 'continent']
pd.read_csv('../data/drinks.csv', header=0, names=col_names)
# create a DataFrame from a dictionary of lists
pd.DataFrame({'state':['AL', 'AK', 'AZ'], 'capital':['Montgomery', 'Juneau', 'Phoenix']})
# Series have many useful string methods (accessed via 'str')
drinks.country.str.upper() # returns uppercase Series
drinks.country.str.contains('Aus') # returns a Series of booleans...
drinks[drinks.country.str.contains('Aus')] # ...which can be used for filtering
# only select columns with names that match a specific pattern
cols = pd.Series(drinks.columns)
drinks[cols[cols.str.contains('servings')]]
# replace all instances of a value (supports 'inplace=True' argument)
drinks.continent.replace('EU', 'EUR') # replace values in a Series
drinks.replace('USA', 'United States') # replace values throughout a DataFrame
# map values to other values
drinks['hemisphere'] = drinks.continent.map({'NA':'West', 'SA':'West', 'EU':'East', 'AF':'East', 'AS':'East', 'OC':'East'})
# convert a range of values into descriptive groups
drinks['beer_level'] = 'low' # initially set all values to 'low'
drinks.loc[drinks.beer_servings.between(101, 200), 'beer_level'] = 'med' # change 101-200 to 'med'
drinks.loc[drinks.beer_servings.between(201, 400), 'beer_level'] = 'high' # change 201-400 to 'high'
# display a cross-tabulation of two Series
pd.crosstab(drinks.continent, drinks.beer_level)
# convert 'beer_level' into the 'category' data type (new in pandas 0.15.0)
drinks['beer_level'] = pd.Categorical(drinks.beer_level, categories=['low', 'med', 'high'])
drinks.sort_index(by='beer_level') # sorts by the categorical ordering (low to high)
# create dummy variables for 'continent' and add them to the DataFrame
cont_dummies = pd.get_dummies(drinks.continent, prefix='cont').iloc[:, 1:] # exclude first column
drinks = pd.concat([drinks, cont_dummies], axis=1) # axis=0 for rows, axis=1 for columns
# randomly sample a DataFrame
mask = np.random.rand(len(drinks)) < 0.66 # create a Series of booleans
train = drinks[mask] # will contain about 66% of the rows
test = drinks[~mask] # will contain the remaining rows
# change the maximum number of rows and columns printed ('None' means unlimited)
pd.set_option('max_rows', None) # default is 60 rows
pd.set_option('max_columns', None) # default is 20 columns
print drinks
# reset options to defaults
pd.reset_option('max_rows')
pd.reset_option('max_columns')
# change the options temporarily (settings are restored when you exit the 'with' block)
with pd.option_context('max_rows', None, 'max_columns', None):
print drinks