-
Notifications
You must be signed in to change notification settings - Fork 666
/
Copy path06_iris_solution.py
81 lines (61 loc) · 2.4 KB
/
06_iris_solution.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
'''
SOLUTIONS: "Human Learning" with iris data
'''
from sklearn.datasets import load_iris
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
# load the famous iris data
iris = load_iris()
# what do you think these attributes represent?
iris.data
iris.data.shape
iris.feature_names
iris.target
iris.target_names
# intro to numpy
type(iris.data)
## PART 1: Read data into pandas and explore
# read iris.data into a pandas DataFrame (df), including column names
df = pd.DataFrame(iris.data, columns=iris.feature_names)
# clean up column names
features = [name[:-5].replace(' ', '_') for name in iris.feature_names]
# read into pandas again, with better column names
df = pd.DataFrame(iris.data, columns=features)
# create a list of species (150 elements) using iris.target and iris.target_names
species = [iris.target_names[num] for num in iris.target]
# add the species list as a new DataFrame column
df['species'] = species
# explore data numerically, looking for differences between species
df.describe()
df.groupby('species').sepal_length.mean()
df.groupby('species')['sepal_length', 'sepal_width', 'petal_length', 'petal_width'].mean()
df.groupby('species').agg(np.mean)
df.groupby('species').agg([np.min, np.max])
df.groupby('species').describe()
# explore data by sorting, looking for differences between species
df.sort_index(by='sepal_length').values
df.sort_index(by='sepal_width').values
df.sort_index(by='petal_length').values
df.sort_index(by='petal_width').values
# explore data visually, looking for differences between species
df.petal_width.hist(by=species, sharex=True)
df.boxplot(column='petal_width', by='species')
df.boxplot(by='species')
df.plot(x='petal_length', y='petal_width', kind='scatter', c=iris.target)
pd.scatter_matrix(df, c=iris.target)
## PART 2: Write a function to predict the species for each observation
# create a dictionary so we can reference columns by name
col_ix = {col:index for index, col in enumerate(df.columns)}
# define function that takes in a row of data and returns a predicted species
def classify_iris(data):
if data[col_ix['petal_length']] < 3:
return 'setosa'
elif data[col_ix['petal_width']] < 1.8:
return 'versicolor'
else:
return 'virginica'
# make predictions and store as numpy array
preds = np.array([classify_iris(row) for row in df.values])
# calculate the accuracy of the predictions
np.mean(preds == df.species.values)