-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathhearing.py
242 lines (202 loc) · 8.63 KB
/
hearing.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
import logging
import speech_recognition as sr
import audioop
from PIL import Image, ImageDraw, ImageFont
import io
import torch
import whisper
import queue
import threading
import numpy as np
import time
import platform
import math
from datetime import datetime
import editdistance
import string
import re
from state import State
MIC_IMG = Image.open("static/mic.png").convert("RGBA")
log = logging.getLogger(__name__)
def tokenize(s: str):
s = s.translate(str.maketrans('', '', string.punctuation))
return s.lower().split()
class MicrophoneStreaming:
def __init__(
self,
enabled=True,
model: str = "tiny",
device: str = ("cuda" if torch.cuda.is_available() else "cpu"),
english: bool = True,
verbose: bool = False,
energy: int = 300,
pause: float = 0.8,
dynamic_energy: bool = False,
model_root: str = "models",
mic_index: int = None,
no_speech_threshold: float = 0.5,
ok_speech_threshold: float = 0.5,
):
self.energy = energy
self.pause = pause
self.dynamic_energy = dynamic_energy
self.verbose = verbose
self.english = english
self.no_speech_threshold = no_speech_threshold
self.ok_speech_threshold = ok_speech_threshold
self.platform = platform.system().lower()
self.gpu = (device == 'cuda')
if self.platform == "darwin":
if device == "mps":
log.warning(
"Using MPS for Mac, this does not work but may in the future"
)
device = "mps"
device = torch.device(device)
if (model != "large" and model != "large-v2") and self.english:
model = model + ".en"
log.info(f'Loading Whisper model {model}')
self.audio_model = whisper.load_model(model, download_root=model_root).to(
device
)
self.audio_queue = queue.Queue()
self.last_result_time = (None, datetime.now())
self.last_ok_text_time = ('', datetime.now())
self.empty_results = ["", " ", "\n", None]
self.mic_index = mic_index
self.islocked = False
if self.mic_index is None:
log.info("No mic index provided, using default")
self.source = sr.Microphone(sample_rate=16000, device_index=self.mic_index)
self.recorder = sr.Recognizer()
self.recorder.energy_threshold = self.energy
self.recorder.pause_threshold = self.pause
self.recorder.dynamic_energy_threshold = self.dynamic_energy
if not enabled:
return
with self.source:
self.recorder.adjust_for_ambient_noise(self.source)
self.recorder.listen_in_background(
self.source, self.record_callback, phrase_time_limit=2
)
self.start()
def start(self):
self.thread = threading.Thread(target=self.transcribe_forever)
self.thread.start()
log.info("Transcribing, you can now talk")
def stop(self):
log.info("Stopping transcription thread...")
self.thread.transcribe = False
self.thread.join()
log.info("Stopped transcribing, please wait to talk")
def lock(self):
self.islocked = True
def locked(self):
return self.islocked
def unlock(self):
self.islocked = False
def preprocess(self, data):
return torch.from_numpy(
np.frombuffer(data, np.int16).flatten().astype(np.float32) / 32768.0
)
def get_all_audio(self, min_time: float = -1.0):
audio = bytes()
got_audio = False
time_start = time.time()
while not got_audio or time.time() - time_start < min_time:
while not self.audio_queue.empty():
audio += self.audio_queue.get()
got_audio = True
data = sr.AudioData(audio, 16000, 2)
data = data.get_raw_data()
return data
def record_callback(self, _, audio: sr.AudioData) -> None:
# check if locked
if not self.locked():
data = audio.get_raw_data()
self.audio_queue.put_nowait(data)
def transcribe_forever(self) -> None:
while getattr(threading.current_thread(), "transcribe", True):
try:
self.transcribe()
except Exception as e:
log.error(e)
log.debug(f'ended transcription loop')
def transcribe(self, data=None, realtime: bool = False) -> None:
if data is None:
audio_data = self.get_all_audio()
else:
audio_data = data
audio_data = self.preprocess(audio_data)
if self.english:
result = self.audio_model.transcribe(audio_data, fp16=self.gpu, language="english")
else:
result = self.audio_model.transcribe(audio_data, fp16=self.gpu)
# remove repeated substrings
result['text'] = re.sub(r"(.+?)\1+", r"\1", result['text'])
if result['text'] not in self.empty_results:
now = datetime.now()
self.last_result_time = result, now
# Check probabilities
no_speech_probs = [s['no_speech_prob'] for s in result['segments']]
ok_speech_probs = [math.exp(s['avg_logprob']) for s in result['segments']]
any_no_speech = any(p > self.no_speech_threshold for p in no_speech_probs)
all_ok_speech = all(p > self.ok_speech_threshold for p in ok_speech_probs)
# Check text is new
text = result['text'].strip()
prev_text, prev_time = self.last_ok_text_time
words, prev_words = tokenize(text), tokenize(prev_text)
text_diff = editdistance.eval(words, prev_words)
time_diff = (now - prev_time).seconds
text_new = (text_diff > 2) or (time_diff > 5)
for no, ok in zip(no_speech_probs, ok_speech_probs):
log.info(f"Transcribed '{text}'; "
f"prob: no_speech={no:.2f}, ok={ok:.2f}; "
f"ok diff: text={text_diff}, time={time_diff}; ")
if (not any_no_speech) and all_ok_speech and text_new:
self.last_ok_text_time = (text, datetime.now())
State.input('HEAR', text)
def show(self):
source = sr.Microphone(sample_rate=16000, device_index=self.mic_index)
while True:
try:
with source:
buffer = source.stream.read(source.CHUNK)
energy = audioop.rms(buffer, source.SAMPLE_WIDTH)
rel = min(1, max(0, energy / 5000))
w, h = MIC_IMG.size
im = Image.new("RGBA", (400,h))
# Draw microphone level
draw = ImageDraw.Draw(im)
draw.rectangle(((0, 0), (w-1, h)), fill=(0, 0, 0))
size = (h / 1.5) - int((h / 1.5) * rel)
color = (255, 0, 0) if self.locked() else (0, 128, 0)
draw.rectangle(((0, size), (w-1, h)), fill=color)
im.paste(MIC_IMG, mask=MIC_IMG)
# Draw last status
font = ImageFont.load_default()
result, last_time = self.last_result_time
if result:
time_str = f'{last_time:%H:%M:%S}'
draw.text((w+10, 6), time_str, font=font, fill=(0, 0, 0, 128))
text = result['text']
segs = result['segments']
draw.text((w+10, 24), text, font=font, fill=(0, 0, 0))
ok_prob = min([math.exp(s['avg_logprob']) for s in segs])
no_prob = max([s['no_speech_prob'] for s in segs])
ok = (ok_prob > self.ok_speech_threshold)
no = (no_prob < self.no_speech_threshold)
pcol = lambda x: (0, 128, 0) if x else (255, 0, 0)
ok_str = f'p(ok speech)={ok_prob:.2f}'
no_str = f'p(no speech)={no_prob:.2f}'
draw.text((w+10, 42), ok_str, font=font, fill=pcol(ok))
draw.text((w+150, 42), no_str, font=font, fill=pcol(no))
arr = io.BytesIO()
im.save(arr, format="png")
frame = arr.getvalue()
yield (
b"--frame\r\n" b"Content-Type: image/png\r\n\r\n" + frame + b"\r\n"
)
except Exception as e:
log.error(e)
time.sleep(0.01)