forked from viorik/ConvLSTM
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathConvLSTM.lua
322 lines (284 loc) · 12.3 KB
/
ConvLSTM.lua
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
--[[
Convolutional LSTM for short term visual cell
inputSize - number of input feature planes
outputSize - number of output feature planes
rho - recurrent sequence length
kc - convolutional filter size to convolve input
km - convolutional filter size to convolve cell; usually km > kc
--]]
local _ = require 'moses'
require 'nn'
require 'dpnn'
require 'rnn'
require 'extracunn'
local ConvLSTM, parent = torch.class('nn.ConvLSTM', 'nn.AbstractRecurrent')
function ConvLSTM:__init(inputSize, outputSize, rho, kc, km, stride)
parent.__init(self, rho or 10)
self.inputSize = inputSize
self.outputSize = outputSize
self.kc = kc
self.km = km
self.padc = torch.floor(kc/2)
self.padm = torch.floor(km/2)
self.stride = stride or 1
-- build the model
self.recurrentModule = self:buildModel()
-- make it work with nn.Container
self.modules[1] = self.recurrentModule
self.sharedClones[1] = self.recurrentModule
-- for output(0), cell(0) and gradCell(T)
self.zeroTensor = torch.Tensor()
self.cells = {}
self.gradCells = {}
end
-------------------------- factory methods -----------------------------
function ConvLSTM:buildGate()
-- Note : Input is : {input(t), output(t-1), cell(t-1)}
local gate = nn.Sequential()
gate:add(nn.NarrowTable(1,2)) -- we don't need cell here
local input2gate = nn.SpatialConvolution(self.inputSize, self.outputSize, self.kc, self.kc, self.stride, self.stride, self.padc, self.padc)
local output2gate = nn.SpatialConvolutionNoBias(self.outputSize, self.outputSize, self.km, self.km, self.stride, self.stride, self.padm, self.padm)
local para = nn.ParallelTable()
para:add(input2gate):add(output2gate)
gate:add(para)
gate:add(nn.CAddTable())
gate:add(nn.Sigmoid())
return gate
end
function ConvLSTM:buildInputGate()
self.inputGate = self:buildGate()
return self.inputGate
end
function ConvLSTM:buildForgetGate()
self.forgetGate = self:buildGate()
return self.forgetGate
end
function ConvLSTM:buildcellGate()
-- Input is : {input(t), output(t-1), cell(t-1)}, but we only need {input(t), output(t-1)}
local hidden = nn.Sequential()
hidden:add(nn.NarrowTable(1,2))
local input2gate = nn.SpatialConvolution(self.inputSize, self.outputSize, self.kc, self.kc, self.stride, self.stride, self.padc, self.padc)
local output2gate = nn.SpatialConvolutionNoBias(self.outputSize, self.outputSize, self.km, self.km, self.stride, self.stride, self.padm, self.padm)
local para = nn.ParallelTable()
para:add(input2gate):add(output2gate)
hidden:add(para)
hidden:add(nn.CAddTable())
hidden:add(nn.Tanh())
self.cellGate = hidden
return hidden
end
function ConvLSTM:buildcell()
-- Input is : {input(t), output(t-1), cell(t-1)}
self.inputGate = self:buildInputGate()
self.forgetGate = self:buildForgetGate()
self.cellGate = self:buildcellGate()
-- forget = forgetGate{input, output(t-1), cell(t-1)} * cell(t-1)
local forget = nn.Sequential()
local concat = nn.ConcatTable()
concat:add(self.forgetGate):add(nn.SelectTable(3))
forget:add(concat)
forget:add(nn.CMulTable())
-- input = inputGate{input(t), output(t-1), cell(t-1)} * cellGate{input(t), output(t-1), cell(t-1)}
local input = nn.Sequential()
local concat2 = nn.ConcatTable()
concat2:add(self.inputGate):add(self.cellGate)
input:add(concat2)
input:add(nn.CMulTable())
-- cell(t) = forget + input
local cell = nn.Sequential()
local concat3 = nn.ConcatTable()
concat3:add(forget):add(input)
cell:add(concat3)
cell:add(nn.CAddTable())
self.cell = cell
return cell
end
function ConvLSTM:buildOutputGate()
self.outputGate = self:buildGate()
return self.outputGate
end
-- cell(t) = cell{input, output(t-1), cell(t-1)}
-- output(t) = outputGate{input, output(t-1)}*tanh(cell(t))
-- output of Model is table : {output(t), cell(t)}
function ConvLSTM:buildModel()
-- Input is : {input(t), output(t-1), cell(t-1)}
self.cell = self:buildcell()
self.outputGate = self:buildOutputGate()
-- assemble
local concat = nn.ConcatTable()
concat:add(nn.NarrowTable(1,2)):add(self.cell)
local model = nn.Sequential()
model:add(concat)
-- output of concat is {{input(t), output(t-1)}, cell(t)},
-- so flatten to {input(t), output(t-1), cell(t)}
model:add(nn.FlattenTable())
local cellAct = nn.Sequential()
cellAct:add(nn.SelectTable(3))
cellAct:add(nn.Tanh())
local concat3 = nn.ConcatTable()
concat3:add(self.outputGate):add(cellAct)
local output = nn.Sequential()
output:add(concat3)
output:add(nn.CMulTable())
-- we want the model to output : {output(t), cell(t)}
local concat4 = nn.ConcatTable()
concat4:add(output):add(nn.SelectTable(3))
model:add(concat4)
return model
end
------------------------- forward backward -----------------------------
function ConvLSTM:updateOutput(input)
local prevOutput, prevCell
if self.step == 1 then
prevOutput = self.userPrevOutput or self.zeroTensor
prevCell = self.userPrevCell or self.zeroTensor
self.zeroTensor:resize(self.outputSize,input:size(2),input:size(3)):zero()
else
-- previous output and memory of this module
prevOutput = self.output
prevCell = self.cell
end
-- output(t), cell(t) = lstm{input(t), output(t-1), cell(t-1)}
local output, cell
if self.train ~= false then
self:recycle()
local recurrentModule = self:getStepModule(self.step)
-- the actual forward propagation
output, cell = unpack(recurrentModule:updateOutput{input, prevOutput, prevCell})
else
output, cell = unpack(self.recurrentModule:updateOutput{input, prevOutput, prevCell})
end
if self.train ~= false then
local input_ = self.inputs[self.step]
self.inputs[self.step] = self.copyInputs
and nn.rnn.recursiveCopy(input_, input)
or nn.rnn.recursiveSet(input_, input)
end
self.outputs[self.step] = output
self.cells[self.step] = cell
self.output = output
self.cell = cell
self.step = self.step + 1
self.gradPrevOutput = nil
self.updateGradInputStep = nil
self.accGradParametersStep = nil
self.gradParametersAccumulated = false
-- note that we don't return the cell, just the output
return self.output
end
function ConvLSTM:backwardThroughTime(timeStep, rho)
assert(self.step > 1, "expecting at least one updateOutput")
self.gradInputs = {} -- used by Sequencer, Repeater
timeStep = timeStep or self.step
local rho = math.min(rho or self.rho, timeStep-1)
local stop = timeStep - rho
if self.fastBackward then
for step=timeStep-1,math.max(stop,1),-1 do
-- set the output/gradOutput states of current Module
local recurrentModule = self:getStepModule(step)
-- backward propagate through this step
local gradOutput = self.gradOutputs[step]
if self.gradPrevOutput then
self._gradOutputs[step] = nn.rnn.recursiveCopy(self._gradOutputs[step], self.gradPrevOutput)
nn.rnn.recursiveAdd(self._gradOutputs[step], gradOutput)
gradOutput = self._gradOutputs[step]
end
local scale = self.scales[step]
local output = (step == 1) and (self.userPrevOutput or self.zeroTensor) or self.outputs[step-1]
local cell = (step == 1) and (self.userPrevCell or self.zeroTensor) or self.cells[step-1]
local inputTable = {self.inputs[step], output, cell}
local gradCell = (step == self.step-1) and (self.userNextGradCell or self.zeroTensor) or self.gradCells[step]
local gradInputTable = recurrentModule:backward(inputTable, {gradOutput, gradCell}, scale)
gradInput, self.gradPrevOutput, gradCell = unpack(gradInputTable)
self.gradCells[step-1] = gradCell
table.insert(self.gradInputs, 1, gradInput)
if self.userPrevOutput then self.userGradPrevOutput = self.gradPrevOutput end
end
self.gradParametersAccumulated = true
return gradInput
else
local gradInput = self:updateGradInputThroughTime()
self:accGradParametersThroughTime()
return gradInput
end
end
function ConvLSTM:updateGradInputThroughTime(timeStep, rho)
assert(self.step > 1, "expecting at least one updateOutput")
self.gradInputs = {}
local gradInput
timeStep = timeStep or self.step
local rho = math.min(rho or self.rho, timeStep-1)
local stop = timeStep - rho
for step=timeStep-1,math.max(stop,1),-1 do
-- set the output/gradOutput states of current Module
local recurrentModule = self:getStepModule(step)
-- backward propagate through this step
local gradOutput = self.gradOutputs[step]
if self.gradPrevOutput then
self._gradOutputs[step] = nn.rnn.recursiveCopy(self._gradOutputs[step], self.gradPrevOutput)
nn.rnn.recursiveAdd(self._gradOutputs[step], gradOutput)
gradOutput = self._gradOutputs[step]
end
local output = (step == 1) and (self.userPrevOutput or self.zeroTensor) or self.outputs[step-1]
local cell = (step == 1) and (self.userPrevCell or self.zeroTensor) or self.cells[step-1]
local inputTable = {self.inputs[step], output, cell}
local gradCell = (step == self.step-1) and (self.userNextGradCell or self.zeroTensor) or self.gradCells[step]
local gradInputTable = recurrentModule:updateGradInput(inputTable, {gradOutput, gradCell})
gradInput, self.gradPrevOutput, gradCell = unpack(gradInputTable)
self.gradCells[step-1] = gradCell
table.insert(self.gradInputs, 1, gradInput)
if self.userPrevOutput then self.userGradPrevOutput = self.gradPrevOutput end
end
return gradInput
end
function ConvLSTM:accGradParametersThroughTime(timeStep, rho)
timeStep = timeStep or self.step
local rho = math.min(rho or self.rho, timeStep-1)
local stop = timeStep - rho
for step=timeStep-1,math.max(stop,1),-1 do
-- set the output/gradOutput states of current Module
local recurrentModule = self:getStepModule(step)
-- backward propagate through this step
local scale = self.scales[step]
local output = (step == 1) and (self.userPrevOutput or self.zeroTensor) or self.outputs[step-1]
local cell = (step == 1) and (self.userPrevCell or self.zeroTensor) or self.cells[step-1]
local inputTable = {self.inputs[step], output, cell}
local gradOutput = (step == self.step-1) and self.gradOutputs[step] or self._gradOutputs[step]
local gradCell = (step == self.step-1) and (self.userNextGradCell or self.zeroTensor) or self.gradCells[step]
local gradOutputTable = {gradOutput, gradCell}
recurrentModule:accGradParameters(inputTable, gradOutputTable, scale)
end
self.gradParametersAccumulated = true
return gradInput
end
function ConvLSTM:accUpdateGradParametersThroughTime(lr, timeStep, rho)
timeStep = timeStep or self.step
local rho = math.min(rho or self.rho, timeStep-1)
local stop = timeStep - rho
for step=timeStep-1,math.max(stop,1),-1 do
-- set the output/gradOutput states of current Module
local recurrentModule = self:getStepModule(step)
-- backward propagate through this step
local scale = self.scales[step]
local output = (step == 1) and (self.userPrevOutput or self.zeroTensor) or self.outputs[step-1]
local cell = (step == 1) and (self.userPrevCell or self.zeroTensor) or self.cells[step-1]
local inputTable = {self.inputs[step], output, cell}
local gradOutput = (step == self.step-1) and self.gradOutputs[step] or self._gradOutputs[step]
local gradCell = (step == self.step-1) and (self.userNextGradCell or self.zeroTensor) or self.gradCells[step]
local gradOutputTable = {self.gradOutputs[step], gradCell}
recurrentModule:accUpdateGradParameters(inputTable, gradOutputTable, lr*scale)
end
return gradInput
end
function ConvLSTM:initBias(forgetBias, otherBias)
local fBias = forgetBias or 1
local oBias = otherBias or 0
self.inputGate.modules[2].modules[1].bias:fill(oBias)
--self.inputGate.modules[2].modules[2].bias:fill(oBias)
self.outputGate.modules[2].modules[1].bias:fill(oBias)
--self.outputGate.modules[2].modules[2].bias:fill(oBias)
self.cellGate.modules[2].modules[1].bias:fill(oBias)
--self.cellGate.modules[2].modules[2].bias:fill(oBias)
self.forgetGate.modules[2].modules[1].bias:fill(fBias)
--self.forgetGate.modules[2].modules[2].bias:fill(fBias)
end