-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
71 lines (61 loc) · 2.88 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
import argparse
from data_handling import load_data, filter_verbs
from text_processing import load_nlp_model, process_text
from advanced_text_processing import lemmatize_verbs, find_verb_locations, adjust_verb_locations
from rhyme_processing import replace_every_seventh_with_random_rhyme
from music_generator import create_music_with_music21, get_every_seventh_character
from stanza_scrambler import shuffle_every_other_word_and_rotate
def main():
parser = argparse.ArgumentParser(
description="Oulipo Variations: Advanced text processing utilities.")
parser.add_argument(
'--load', type=str, help='Path to the JSON file with input data for loading and processing')
parser.add_argument('--process', type=str,
help='Path to a text file to process')
parser.add_argument('--lemmatize', action='store_true',
help='Apply lemmatization to processed text')
parser.add_argument('--rhyme', action='store_true',
help='Replace every seventh word with a rhyme')
parser.add_argument('--generate_music', action='store_true',
help='Generate music from the text.')
parser.add_argument('--scramble_stanzas', action='store_true',
help='Scramble the text with text scrambler.')
args = parser.parse_args()
if args.load:
print("Loading data...")
df = load_data(args.load)
print("Filtering verbs...")
verbs_df = filter_verbs(df)
print(verbs_df.head())
if args.process:
print("Loading NLP model...")
nlp_model = load_nlp_model()
print(f"Processing text from {args.process}...")
with open(args.process, 'r') as file:
text = file.read()
if args.lemmatize:
print("Lemmatizing text...")
verbs = process_text(text, nlp_model)
lemmatized_verbs = lemmatize_verbs(nlp_model, verbs.values())
verb_locations = find_verb_locations(verbs_df, lemmatized_verbs)
adjusted_verbs = adjust_verb_locations(verbs_df, verb_locations)
print("Lemmatized and adjusted verbs:")
print(adjusted_verbs)
else:
processed_text = process_text(text, nlp_model)
print("Processed Text Output:")
print(processed_text)
if args.rhyme:
print("Replacing every seventh word with a rhyme...")
transformed_text = replace_every_seventh_with_random_rhyme(text)
print("Transformed Text:")
print(transformed_text)
if args.generate_music:
chars = get_every_seventh_character(args.text)
create_music_with_music21(chars)
if args.scramble_stanzas:
variations = shuffle_every_other_word_and_rotate(args.text)
for i, variation in enumerate(variations, 1):
print(f"Variation {i}:\n{variation}\n")
if __name__ == "__main__":
main()