-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.cc
169 lines (137 loc) · 5.57 KB
/
main.cc
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
// clang-format off
#include <kaminpar-cli/dkaminpar_arguments.h>
#include <kaminpar-dist/dkaminpar.h>
// clang-format on
#include <kagen.h>
#include <mpi.h>
#include "kaminpar_label_propagation.h"
#include "kamping_dispatch_label_propagation.h"
#include "kamping_label_propagation.h"
#include "kamping_sparse_label_propagation.h"
#include "mpi_label_propagation.h"
using namespace kaminpar;
using namespace kaminpar::dist;
namespace {
std::unique_ptr<GlobalClusterer> create_kaminpar_clusterer(Context const& ctx) {
return std::make_unique<KaminparLP>(ctx);
}
std::unique_ptr<GlobalClusterer> create_kamping_dispatch_clusterer(
Context const& ctx) {
return std::make_unique<KampingDispatchLP>(ctx);
}
std::unique_ptr<GlobalClusterer> create_kamping_sparse_clusterer(
Context const& ctx) {
return std::make_unique<KampingSparseLP>(ctx);
}
std::unique_ptr<GlobalClusterer> create_kamping_clusterer(Context const& ctx) {
return std::make_unique<KampingLP>(ctx);
}
std::unique_ptr<GlobalClusterer> create_mpi_clusterer(Context const& ctx) {
return std::make_unique<MpiLP>(ctx);
}
template <typename Clusterer>
Context create_context(Clusterer& clusterer) {
Context ctx = create_default_context();
ctx.coarsening.global_clustering_algorithm =
GlobalClusteringAlgorithm::EXTERNAL;
ctx.coarsening.external_global_clustering_algorithm = clusterer;
return ctx;
}
struct ApplicationContext {
int seed = 0;
BlockID k = 2;
kagen::FileFormat io_format = kagen::FileFormat::EXTENSION;
kagen::GraphDistribution io_distribution =
kagen::GraphDistribution::BALANCE_EDGES;
std::string graph_filename = "";
};
NodeID load_kagen_graph(ApplicationContext const& app, dKaMinPar& partitioner) {
using namespace kagen;
KaGen generator(MPI_COMM_WORLD);
generator.UseCSRRepresentation();
Graph graph = [&] {
if (std::find(app.graph_filename.begin(), app.graph_filename.end(), ';') !=
app.graph_filename.end()) {
return generator.GenerateFromOptionString(app.graph_filename);
} else {
return generator.ReadFromFile(app.graph_filename, app.io_format,
app.io_distribution);
}
}();
std::vector<GlobalNodeID> vtxdist = BuildVertexDistribution<unsigned long>(
graph, MPI_UNSIGNED_LONG, MPI_COMM_WORLD);
std::vector<GlobalEdgeID> xadj = graph.TakeXadj<GlobalEdgeID>();
std::vector<GlobalNodeID> adjncy = graph.TakeAdjncy<GlobalNodeID>();
std::vector<GlobalNodeWeight> vwgt =
graph.TakeVertexWeights<GlobalNodeWeight>();
std::vector<GlobalEdgeWeight> adjwgt =
graph.TakeEdgeWeights<GlobalEdgeWeight>();
bool no_vwgt = vwgt.empty(), no_adjwgt = adjwgt.empty();
MPI_Allreduce(MPI_IN_PLACE, &no_vwgt, 1, MPI_CXX_BOOL, MPI_LAND,
MPI_COMM_WORLD);
MPI_Allreduce(MPI_IN_PLACE, &no_adjwgt, 1, MPI_CXX_BOOL, MPI_LAND,
MPI_COMM_WORLD);
partitioner.import_graph(vtxdist.data(), xadj.data(), adjncy.data(),
no_vwgt ? nullptr : vwgt.data(),
no_adjwgt ? nullptr : adjwgt.data());
return graph.vertex_range.second - graph.vertex_range.first;
}
void perform_warmup_alltoallv() {
PEID size = 0;
MPI_Comm_size(MPI_COMM_WORLD, &size);
std::vector<int> sendbuf(size, 42);
std::vector<int> sendcounts(size, 1);
std::vector<int> sdispls(size, 0);
std::iota(sdispls.begin(), sdispls.end(), 0);
std::vector<int> recvbuf(size, 0);
std::vector<int> recvcounts(size, 1);
std::vector<int> rdispls(size, 0);
std::iota(rdispls.begin(), rdispls.end(), 0);
MPI_Alltoallv(sendbuf.data(), sendcounts.data(), sdispls.data(), MPI_INT,
recvbuf.data(), recvcounts.data(), rdispls.data(), MPI_INT,
MPI_COMM_WORLD);
}
} // namespace
int main(int argc, char* argv[]) {
int provided;
MPI_Init_thread(&argc, &argv, MPI_THREAD_FUNNELED, &provided);
CLI::App cli;
ApplicationContext app;
Context ctx = create_default_context();
cli.add_option_function<std::string>(
"-P,--preset",
[&](std::string const preset) {
if (preset == "mpi") {
ctx = create_context(create_mpi_clusterer);
} else if (preset == "kamping") {
ctx = create_context(create_kamping_clusterer);
} else if (preset == "kamping-sparse") {
ctx = create_context(create_kamping_sparse_clusterer);
} else if (preset == "kamping-dispatch") {
ctx = create_context(create_kamping_dispatch_clusterer);
} else if (preset == "kaminpar") {
ctx = create_context(create_kaminpar_clusterer);
} else {
ctx = create_context_by_preset_name(preset);
}
})
->check(CLI::IsMember({"inorder-default", "default", "mpi",
"kamping-dispatch", "kamping", "kamping-sparse",
"kaminpar"}))
->required();
cli.add_option("-G,--graph,--kagen_option_string", app.graph_filename)->required();
cli.add_option("-k,--k", app.k, "Number of blocks in the partition.")
->capture_default_str();
cli.add_option("-s,--seed", app.seed, "Seed for random number generation.")
->capture_default_str();
CLI11_PARSE(cli, argc, argv);
perform_warmup_alltoallv();
dKaMinPar partitioner(MPI_COMM_WORLD, 1, ctx);
dKaMinPar::reseed(app.seed);
partitioner.set_output_level(OutputLevel::EXPERIMENT);
partitioner.context().debug.graph_filename = app.graph_filename;
NodeID const n = load_kagen_graph(app, partitioner);
std::vector<BlockID> partition(n);
partitioner.compute_partition(app.k, partition.data());
return MPI_Finalize();
}