-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtutorbot.html
148 lines (141 loc) · 3.9 KB
/
tutorbot.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
<!DOCTYPE html>
<html>
<head>
<title>tutorbot</title>
<link rel="stylesheet" href="tutorbot.css" media="screen">
<link rel="stylesheet" type="text/css" href="jsxgraph.css" />
<link rel="stylesheet" type="text/css" href="tutorbot.css" />
<script type="text/javascript" src="jsxgraphcore.js"></script>
</head>
<body>
<div id="box" style="float:left;width:400px; height:400px;">
</div>
<div id = "solutionbox" style= "width:50%;float:left;margin-left:7%">
<div class = "pullleft width7">
Given:
</div>
<div class = "pullleft">
ABCD is a parallelogram
</div>
<hr style = "clear:both;"/>
<div class = "pullleft width7">
To Prove:
</div>
<div class = "pullleft">
ABCD is a rhombus
</div>
<hr style = "clear:both;"/>
<div class = "pullleft width7">
Proof:
</div>
<hr style = "clear:both;"/>
<div class = "statementdiv">
AB = CD
<br/>
and<br/> AD = BC
<br/>
</div>
<div class = "reasondiv">
opposite sides of parallelogram ABCD
</div>
<hr style = "clear:both;"/>
<span class = "smallertext">
So we need to prove that adjacent sides of ABCD are equal as well.
if we prove that AB = AD and CD = CB then all sides of ABCD are equal
and ABCD will be proved to be rhombus.
</span>
<hr style = "clear:both;"/>
<div class = "statementdiv">
AP = AS = x<br/>
SD = DR = y<br/>
PB = BQ = a<br/>
CR = CQ = b<br/>
</div>
<div class = "reasondiv">
External Tangents from a point to circle are equal.
</div>
<hr style = "clear:both;"/>
<div class = "statementdiv">
AB = AP + PB = x + a<br/>
AD = AS + SD = x + y<br/>
So, to prove AB = AD => we will need to prove a = y
</div>
<div class = "reasondiv">
From point 1 and 2 above.<br/>
and <br/>
Points A,P,B are collinear.<br/>
Points A,S,D are collinear.
</div>
<hr style = "clear:both;"/>
<div class = "statementdiv">
In △ POB and △ DOR,<br/><br/>
∠BPO = ∠DRO<br/>
PO = RO<br/>
∠POB = ∠DOR<br/>
∴ △ POB ≅ △ DOR
<br/><br/>
</div>
<div class = "reasondiv">
<br/><br/>
Radius Tangent relation.<br/>
Radii of same circle.<br/>
Vertically opposite angles, AB || CD<br/>
ASA test of congruence.
</div>
<hr style = "clear:both;"/>
<div class = "statementdiv">
∴ DR = PB , <br/>
∴ y = a,
</div>
<div class = "reasondiv">
Corresponding sides of congruent triangles.
</div>
<hr style = "clear:both;"/>
<div class = "statementdiv">
x+y = x+a<br/>
AD = AB
<br/><br/>
</div>
<div class = "reasondiv">
Add x on both sides.<br/>
AD = x + y, AB = x+a <br/>From point 4
</div>
<hr style = "clear:both;"/>
<div class = "statementdiv">
Similarly , we can prove CD = BC
<br/>
AB = AD = CD = BC
</div>
<div class = "reasondiv"></div>
<hr style = "clear:both;"/>
<div class = "statementdiv">
ABCD is a rhombus
</div>
<div class = "reasondiv">
since all sides are equal.
</div>
<hr style = "clear:both;"/>
<br/><br/>
</div>
<!-- solutionbox ends above -->
<script type="text/javascript">
var board = JXG.JSXGraph.initBoard('box',{axis:false, showNavigation:false, showCopyright:false});
var center = board.create('point', [0.0, 0.0],{name:'O'});
var circle = board.create('circle', [center, 3]);
var r = board.create('glider', [0.0,-3.0,circle],{name:'R'});
var q = board.create('glider', [3.0,0.0,circle],{name:'Q'});
var p = board.create('glider', [0.0,3.0,circle],{name:'P'});
var s = board.create('glider', [-3.0,0.0,circle],{name:'S'});
var t1 = board.create('tangent', [p]);
var t2 = board.create('tangent', [q]);
var t3 = board.create('tangent', [r]);
var t4 = board.create('tangent', [s]);
var a = board.create('point', [-3.0, 3.0],{name:'A'});
var b = board.create('point', [3.0, 3.0],{name:'B'});
var c = board.create('point', [3.0, -3.0],{name:'C'});
var d = board.create('point', [-3.0,-3.0],{name:'D'});
var l1 = board.create('segment', [p, r]);
var l2 = board.create('segment', [b, d]);
</script>
</body>
</html>