-
Notifications
You must be signed in to change notification settings - Fork 31
/
Copy pathtry.py
218 lines (169 loc) · 4.99 KB
/
try.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
#!/usr/bin/python
# @Date: 2017-03-22
# test file
# TODO:
# Figure out four point transform
# Figure out testing data warping
# Use webcam as input
# Figure out how to use contours
# Currently detects inner rect -> detect outermost rectangle
# Try using video stream from android phone
from utils import *
from matplotlib import pyplot as plt
import subprocess
from gtts import gTTS
# image = read_img('files/500_1.jpg')
# orig = image
# orig = resize_img(orig, 0.5)
# img = resize_img(img, 0.6)
# img = img_to_gray(img)
# img = canny_edge(img, 720, 350)
# img = canny_edge(img, 270, 390)
# img = laplacian_edge(img)
# img = find_contours(img)
# img = img_to_neg(img)
# img = binary_thresh(img, 85)
# img = close(img)
# img = adaptive_thresh(img)
# img = sobel_edge(img, 'v')
# img = sobel_edge2(img)
# img = median_blur(img)
# img = binary_thresh(img, 106)
# img = dilate_img(img)
# img = binary_thresh(img, 120)
# img = foo_convolution(img)
# histogram(img)
# fourier(img)
# img = harris_edge(img)
# display('image',img)
# show the original image and the edge detected image
# cv2.imshow("Image", image)
# cv2.imshow("Edged", edged)
# cv2.waitKey(0)
# cv2.destroyAllWindows()
# find the contours in the edged image, keeping only the
# largest ones, and initialize the screen contour
# must define here
'''
kernel = np.ones((5,5), np.uint8)
img_erosion = cv2.erode(img, kernel, iterations=1)
img_dilation = cv2.dilate(img, kernel, iterations=1)
opening = cv2.morphologyEx(img, cv2.MORPH_OPEN, kernel)
closing = cv2.morphologyEx(img, cv2.MORPH_CLOSE, kernel)
display('image', closing)
'''
'''
r = 500.0/ image.shape[1]
dim = (500, int(image.shape[0] * r))
image = cv2.resize(image, dim, interpolation = cv2.INTER_AREA)
#image = resize_img(image, 0.6)
ratio = image.shape[0] / 500.0
#display('image',image)
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
gray = cv2.GaussianBlur(gray, (5, 5), 0)
edged = cv2.Canny(gray, 75, 200
'''
'''
show the original image and the edge detected image
cv2.imshow("Image", image)
cv2.imshow("Edged", edged)
cv2.waitKey(0)
cv2.destroyAllWindows()
find largest contours
'''
'''
(_,cnts, _) = cv2.findContours(edged.copy(), cv2.RETR_LIST, cv2.CHAIN_APPROX_SIMPLE)
cnts = sorted(cnts, key = cv2.contourArea, reverse = True)[:5]
#print "cnts: ", cnts
screenCnt = 0
n = .02
flag = True
while(n<.9 and flag==True): #remove while loop if wrong contour is being detected
print(n)
for c in cnts:
# approximate the contour
peri = cv2.arcLength(c, True)
approx = cv2.approxPolyDP(c,n*peri, True)
print("Approx: ", len(approx))
# if our approximated contour has four points, then we
# can assume that we have found our screen
if len(approx) == 4:
screenCnt = approx
flag=False
break
n+=.01
warped = image
'''
'''
print('Screen count:', screenCnt)
cv2.drawContours(image, [screenCnt], -1, (0, 255, 0), 2)
cv2.imshow("Outline", image)
cv2.waitKey(0)
cv2.destroyAllWindows()
'''
'''
warped = four_point_transform(orig, screenCnt.reshape(4, 2))
#warped = orig[ screenCnt[0][0][1]:screenCnt[1][0][1],screenCnt[0][0][0]:screenCnt[2][0][0]]
cv2.imshow('Warped',warped)
cv2.waitKey(0)
cv2.destroyAllWindows()
'''
'''
r = 500.0/warped.shape[1]
dim = (500, 240)
warped = cv2.resize(warped, dim, interpolation = cv2.INTER_AREA)
#cv2.imshow("Original", image)
cv2.imshow("Orignal", orig)
cv2.imshow("Scanned", warped)
cv2.waitKey(0)
cv2.destroyAllWindows()
'''
max_val = 8
max_pt = -1
max_kp = 0
orb = cv2.ORB_create()
# orb is an alternative to SIFT
#test_img = read_img('files/test_100_2.jpg')
#test_img = read_img('files/test_50_2.jpg')
test_img = read_img('files/test_20_2.jpg')
#test_img = read_img('files/test_100_3.jpg')
# test_img = read_img('files/test_20_4.jpg')
# resizing must be dynamic
original = resize_img(test_img, 0.4)
display('original', original)
# keypoints and descriptors
# (kp1, des1) = orb.detectAndCompute(test_img, None)
(kp1, des1) = orb.detectAndCompute(test_img, None)
training_set = ['files/20.jpg', 'files/50.jpg', 'files/100.jpg', 'files/500.jpg']
for i in range(0, len(training_set)):
# train image
train_img = cv2.imread(training_set[i])
(kp2, des2) = orb.detectAndCompute(train_img, None)
# brute force matcher
bf = cv2.BFMatcher()
all_matches = bf.knnMatch(des1, des2, k=2)
good = []
# give an arbitrary number -> 0.789
# if good -> append to list of good matches
for (m, n) in all_matches:
if m.distance < 0.789 * n.distance:
good.append([m])
if len(good) > max_val:
max_val = len(good)
max_pt = i
max_kp = kp2
print(i, ' ', training_set[i], ' ', len(good))
if max_val != 8:
print(training_set[max_pt])
print('good matches ', max_val)
train_img = cv2.imread(training_set[max_pt])
img3 = cv2.drawMatchesKnn(test_img, kp1, train_img, max_kp, good, 4)
note = str(training_set[max_pt])[6:-4]
print('\nDetected denomination: Rs. ', note)
audio_file = 'audio/' + note + '.mp3'
# audio_file = "value.mp3
# tts = gTTS(text=speech_out, lang="en")
# tts.save(audio_file)
(plt.imshow(img3), plt.show())
else:
print('No Matches')