-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathparse_event_logs.py
executable file
·324 lines (293 loc) · 14.5 KB
/
parse_event_logs.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
"""
This file contains utilities to parse the JSON event log output by Spark.
"""
import collections
import json
import logging
import numpy
from optparse import OptionParser
import shuffle_job_filterer
import sys
import metrics
from job import Job
def get_json(line):
# Need to first strip the trailing newline, and then escape newlines (which can appear
# in the middle of some of the JSON) so that JSON library doesn't barf.
return json.loads(line.strip("\n").replace("\n", "\\n"))
class Analyzer:
def __init__(self, filename, job_filterer = lambda x: x):
""" The job_filterer function here accepts a dictionary mapping job ids to jobs, and returns
a new dictionary mapping job_ids to jobs. It can be used to filter out particular jobs from
the set of jobs that are analyzed. """
self.filename = filename
self.logger = logging.getLogger("Analyzer")
self.jobs = {}
# For each stage, jobs that rely on the stage.
self.jobs_for_stage = {}
f = open(filename, "r")
for line in f:
try:
json_data = get_json(line)
except:
logger.error("BAD DATA: %s" % line)
continue
event_type = json_data["Event"]
if event_type == "SparkListenerJobStart":
stage_ids = json_data["Stage IDs"]
job_id = json_data["Job ID"]
# Use the name of the stage with the highest ID as the job's name (this seems to be
# what the Spark UI does).
max_stage_id = max([int(id) for id in stage_ids])
for stage_info in json_data["Stage Infos"]:
if int(stage_info["Stage ID"]) == max_stage_id:
# Use the name of the stage to set the name of the job.
self.jobs[job_id] = Job(job_id, stage_info["Stage Name"])
for stage_id in stage_ids:
if stage_id not in self.jobs_for_stage:
self.jobs_for_stage[stage_id] = []
self.jobs_for_stage[stage_id].append(job_id)
elif event_type == "SparkListenerTaskEnd":
stage_id = json_data["Stage ID"]
# Add the event to all of the jobs that depend on the stage.
for job_id in self.jobs_for_stage[stage_id]:
self.jobs[job_id].add_event(json_data)
self.logger.debug("Filtering jobs based on passed in filter function")
self.jobs = job_filterer(self.jobs)
self.logger.debug("Finished reading input data:")
for job_id, job in self.jobs.iteritems():
job.initialize_job()
job_tasks= job.all_tasks()
job_start_time = min([task.start_time for task in job_tasks])
job_finish_time = max([task.finish_time for task in job_tasks])
job_runtime = (job_finish_time - job_start_time) / 1000.0
stage_str = ["%s (%sm)" % (stage_id, stage.runtime() / 60000.0)
for (stage_id, stage) in job.stages.iteritems()]
self.logger.debug("Job %s has stages: %s and runtime %sm (%ss)" %
(job_id, stage_str, job_runtime / 60., job_runtime))
def write_summary_file(self, values, filename):
summary_file = open(filename, "w")
for percentile in [5, 25, 50, 75, 95]:
summary_file.write("%f\t" % numpy.percentile(values, percentile))
summary_file.write("%f\t%f\n" % (min(values), max(values)))
summary_file.close()
def __write_utilization_summary_file(self, utilization_pairs, filename):
utilization_pairs.sort()
current_total_runtime = 0
percentiles = [0.05, 0.25, 0.5, 0.75, 0.95, 0.99]
output = []
percentile_index = 0
# Add this up here rather than passing it in, because for some types of utilization
# (e.g., network, disk), each task appears multiple times.
total_runtime = sum([x[1] for x in utilization_pairs])
for (utilization, runtime) in utilization_pairs:
current_total_runtime += runtime
current_total_runtime_fraction = float(current_total_runtime) / total_runtime
if current_total_runtime_fraction > percentiles[percentile_index]:
output.append(utilization)
percentile_index += 1
if percentile_index >= len(percentiles):
break
utilizations = [x[0] for x in utilization_pairs]
weights = [x[1] for x in utilization_pairs]
weighted_average = numpy.average(utilizations, weights=weights)
output.append(weighted_average)
f = open(filename, "w")
f.write("Utilization\t0\t")
f.write("\t".join([str(x) for x in output]))
f.write("\n")
f.close()
def output_load_balancing_badness(self, prefix):
self.logger.debug("Outputting information about load balancing")
load_balancing = []
for job_id, job in self.jobs.iteritems():
for stage_id, stage in job.stages.iteritems():
load_balancing.append(stage.load_balancing_badness())
self.write_summary_file(load_balancing, "%s_load_balancing_badness" % prefix)
def output_runtimes(self, prefix):
runtimes = [job.runtime() for (job_id, job) in self.jobs.iteritems()]
self.write_summary_file(runtimes, "%s_runtimes" % prefix)
def output_compute_monotask_time_cdfs(self, prefix):
""" For each stage, outputs a CDF of the runtime of the compute monotasks. """
# Write a gnuplot file to display all of the cdfs.
output_prefix = "{}_compute_monotask_cdf".format(prefix)
gnuplot_file = open("{}.gp".format(output_prefix), "w")
# Copy over the plotting template.
with open("gnuplot_files/plot_cdf_base.gp", "r") as gnuplot_base_file:
for line in gnuplot_base_file:
gnuplot_file.write(line)
gnuplot_file.write("set output \"{}.pdf\"\nplot ".format(output_prefix))
is_first = True
for job_id, job in self.jobs.iteritems():
for stage_id, stage in job.stages.iteritems():
compute_monotask_times = [t.compute_monotask_millis for t in stage.tasks]
output_filename = "{}_{}_{}".format(output_prefix, job_id, stage_id)
with open(output_filename, "w") as runtimes_file:
for index, time in enumerate(sorted(compute_monotask_times)):
runtimes_file.write("{}\t{}\n".format(index, time))
if not is_first:
gnuplot_file.write(", ")
is_first = False
gnuplot_file.write("\"{}\" using 2:1 with l title \"Job {}, Stage {}\"".format(
output_filename, job_id, stage_id))
def output_utilizations(self, prefix):
# TODO: This function outputs the distribution of utilizations while tasks were running by
# calculating a weighted average of the utilizations while tasks were running, using the
# macrotask duration as the weight. This is just an estimate of the average on the machine;
# instead, we should just directly compute the average utilization using the continuous monitor.
self.logger.debug("Outputting utilizations")
disk_utilizations = []
disk_throughputs = []
process_user_cpu_utilizations = []
process_system_cpu_utilizations = []
cpu_utilizations = []
network_utilizations = []
network_utilizations_recv_only = []
network_utilizations_fetch_only = []
task_runtimes = []
# Divide by 8 to convert to bytes!
NETWORK_BANDWIDTH_BPS = 1.0e9 / 8
for job_id, job in self.jobs.iteritems():
for stage_id, stage in job.stages.iteritems():
stage_runtime = (max([t.finish_time for t in stage.tasks]) -
min([t.start_time for t in stage.tasks]))
for task in stage.tasks:
task_runtimes.append(task.runtime())
cpu_utilizations.append((task.total_cpu_utilization / 8., task.runtime()))
process_user_cpu_utilizations.append(
(task.process_user_cpu_utilization / 8., task.runtime()))
process_system_cpu_utilizations.append(
(task.process_system_cpu_utilization / 8., task.runtime()))
for name, disk_utilization in task.disk_utilization.iteritems():
if name in ["xvdb", "xvdf"]:
disk_utilizations.append((disk_utilization.utilization, task.runtime()))
disk_throughputs.append((
disk_utilization.read_throughput_Bps + disk_utilization.write_throughput_Bps,
task.runtime()))
received_utilization = (task.network_utilization.bytes_received_ps /
NETWORK_BANDWIDTH_BPS, task.runtime())
network_utilizations.append(received_utilization)
transmitted_utilization = (task.network_utilization.bytes_transmitted_ps /
NETWORK_BANDWIDTH_BPS, task.runtime())
network_utilizations.append(transmitted_utilization)
network_utilizations_recv_only.append(received_utilization)
if task.has_fetch:
network_utilizations_fetch_only.append(received_utilization)
network_utilizations_fetch_only.append(transmitted_utilization)
self.write_summary_file(task_runtimes, "%s_%s" % (prefix, "task_runtimes"))
self.__write_utilization_summary_file(
disk_utilizations, "%s_%s" % (prefix, "disk_utilization"))
self.__write_utilization_summary_file(
disk_throughputs, "%s_%s" % (prefix, "disk_throughput"))
self.__write_utilization_summary_file(
network_utilizations, "%s_%s" % (prefix, "network_utilization"))
self.__write_utilization_summary_file(
network_utilizations_recv_only, "%s_%s" % (prefix, "network_utilization_recv"))
if network_utilizations_fetch_only:
self.__write_utilization_summary_file(
network_utilizations_fetch_only,
"%s_%s" % (prefix, "network_utilization_fetch_only"))
self.__write_utilization_summary_file(
cpu_utilizations, "%s_%s" % (prefix, "cpu_utilization"))
self.__write_utilization_summary_file(
process_user_cpu_utilizations, "%s_%s" % (prefix, "cpu_process_user_utilization"))
self.__write_utilization_summary_file(
process_system_cpu_utilizations, "%s_%s" % (prefix, "cpu_process_system_utilization"))
def output_stage_resource_metrics(self, filename):
"""
Writes a single file with the CPU, network, and disk resources used by each executor during each
stage.
"""
executor_id_to_host = self.get_executor_id_to_host()
with open("{}_{}".format(filename, "stage_resource_metrics"), "w") as output:
for job_id, job in sorted(self.jobs.iteritems()):
for stage_id, stage in sorted(job.stages.iteritems()):
executor_to_resource_metrics = stage.get_executor_id_to_resource_metrics()
for executor_id, resource_metrics in sorted(executor_to_resource_metrics.iteritems()):
output.write("Job {}, Stage {}, Executor {} ({}):\n{}\n\n".format(
job_id, stage_id, executor_id, executor_id_to_host[executor_id], resource_metrics))
def output_job_resource_metrics(self, filename):
"""
Writes a single file with the CPU, network, and disk resources used by each executor during each
job.
"""
executor_id_to_host = self.get_executor_id_to_host()
with open("{}_{}".format(filename, "job_resource_metrics"), "w") as output:
for job_id, job in sorted(self.jobs.iteritems()):
executor_to_resource_metrics = job.get_executor_id_to_resource_metrics()
for executor_id, resource_metrics in sorted(executor_to_resource_metrics.iteritems()):
output.write("Job {}, Executor {} ({}):\n{}\n\n".format(
job_id, executor_id, executor_id_to_host[executor_id], resource_metrics))
def get_executor_id_to_host(self):
return {task.executor_id: task.executor
for job in self.jobs.itervalues()
for task in job.all_tasks()}
def output_ideal_time_metrics(self, filename, fix_executors = False):
"""
Writes a single file with the CPU, network, and disk ideal times for each stage of each job.
Then, ideal job runtime is reported as the sum of the runtimes of the bottleneck resource in
each of the job's stages.
"""
if not fix_executors:
output_filename = "{}_{}".format(filename, "ideal_time_metrics")
else:
output_filename = "{}_ideal_time_metrics_fix_executors".format(filename)
with open(output_filename, "w") as output:
output.write("Ideal times:\n\n")
for job_id, job in self.jobs.iteritems():
job_runtime_s = 0
for stage_id, stage in job.stages.iteritems():
if fix_executors:
ideal_cpu_s, ideal_network_s, ideal_disk_s = (
stage.get_ideal_times_from_metrics_fix_executors(
metrics.AWS_M24XLARGE_MAX_NETWORK_GIGABITS_PER_S,
num_cores_per_executor = 8))
else:
ideal_cpu_s, ideal_network_s, ideal_disk_s = (
stage.get_ideal_times_from_metrics(
metrics.AWS_M24XLARGE_MAX_NETWORK_GIGABITS_PER_S,
num_cores_per_executor = 8))
ideal_ser_deser_time_s = stage.get_ideal_ser_deser_time_s()
job_runtime_s += max(ideal_cpu_s, ideal_network_s, ideal_disk_s)
# TODO: Right now this will be different than the number that was used to calculate
# the ideal network time (because the ideal network time is calculated using the
# info from the OS counters, which is more accurate than the job-level info).
network_mbits = stage.get_network_mb()
output.write(
"Job {}, Stage {}:\n".format(job_id, stage_id) +
"\tcpu: {:.2f} s\n".format(ideal_cpu_s) +
"\tcpu (only ser / deser): {:.2f} s\n".format(ideal_ser_deser_time_s) +
"\tnetwork: {:.2f} s ({} mb)\n".format(ideal_network_s, network_mbits) +
"\tdisk: {:.2f} s\n".format(ideal_disk_s) +
"\tactual: {:.2f} s\n".format(stage.runtime() / 1000.)
)
output.write("Job {} ideal runtime: {:.2f} s\n".format(job_id, job_runtime_s))
output.write("Job {} actual runtime: {:.2f} s\n".format(job_id, job.runtime() / 1000.))
total_stage_runtime_s = sum([s.runtime() for s_id, s in job.stages.iteritems()]) / 1000.
output.write("Job {} total stage runtime: {:.2f} s\n\n".format(
job_id, total_stage_runtime_s))
def main(argv):
parser = OptionParser(usage="parse_logs.py [options] <log filename>")
parser.add_option(
"-d", "--debug", action="store_true", default=True,
help="Enable additional debug logging")
(opts, args) = parser.parse_args()
if len(args) != 1:
parser.print_help()
sys.exit(1)
if opts.debug:
logging.basicConfig(level=logging.DEBUG)
else:
logging.basicConfig(level=logging.INFO)
filename = args[0]
if filename is None:
parser.print_help()
sys.exit(1)
analyzer = Analyzer(filename)
analyzer.output_utilizations(filename)
analyzer.output_load_balancing_badness(filename)
analyzer.output_runtimes(filename)
analyzer.output_job_resource_metrics(filename)
analyzer.output_stage_resource_metrics(filename)
analyzer.output_ideal_time_metrics(filename)
if __name__ == "__main__":
main(sys.argv[1:])