forked from kaist-dmlab/Hi-COVIDNet
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcovid_aux.py
323 lines (262 loc) · 14.3 KB
/
covid_aux.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
import pandas as pd
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
import torch.nn.utils as torch_utils
import math
import copy
from tqdm.notebook import tqdm
import os
class COVID_AUX_Net(nn.Module):
def __init__(self, df_countries, aux_len=4, feature_len=6, hidden_size=16, num_layers=1, is_aux = True, is_tm = False, output_size = 1):
"""
Parameters
----------
df_countries : dataframe of countries which includes
['Country', 'continent', 'n_confirmed', 'visit', 'iso']
aux_len : length of auxiliary information that will be concatenated to the hidden dimension
feature_len : dimension of the features
hidden_size : hidden dimension size of LSTM
num_layers : number of LSTM layers
"""
super(COVID_AUX_Net, self).__init__()
self.is_aux = is_aux
self.output_size = output_size
self.hidden_size = hidden_size
self.continents = df_countries['continent'].unique()
self.countries = np.array(df_countries.loc[df_countries.visit.eq(1), 'Country'].values)
self.countries = np.delete(self.countries, np.argwhere(self.countries == 'Korea, South'))
self.country_continent = df_countries.set_index('Country').to_dict()['continent']
self.continent_country_cnt = {c: len(df_countries.loc[(df_countries.visit.eq(1)) & (df_countries.continent.eq(c))]) for c in self.continents}
self.continent_country_cnt['Asia'] -= 1
# LSTM for each country's trend of patients within the last 14 days
if is_tm :
self.LSTM_countries = nn.ModuleDict({
c: nn.Sequential(
TransformerModel(ninp=feature_len, nhead=5, nhid=hidden_size, nlayers=num_layers,),
nn.LSTM(feature_len, hidden_size, num_layers, batch_first=True)) for c in self.countries
})
else :
self.LSTM_countries = nn.ModuleDict({
c: nn.Sequential(
nn.LSTM(feature_len, hidden_size, num_layers, batch_first=True)) for c in self.countries
})
if self.is_aux :
self.FCN_continent_patients = nn.ModuleDict({
c: nn.Sequential(nn.Linear((hidden_size + aux_len)*self.continent_country_cnt[c], 8),
nn.ReLU(),
nn.Linear(8, self.output_size)) for c in self.continent_country_cnt
})
else : # no auxilary data
self.FCN_continent_patients = nn.ModuleDict({
c: nn.Sequential(nn.Linear(hidden_size*self.continent_country_cnt[c], 8),
nn.ReLU(),
nn.Linear(8, self.output_size)) for c in self.continent_country_cnt
})
if self.output_size > 1 :
self.FCN_total_patients = nn.ModuleDict({
day: nn.Linear(len(self.continents), 1) for day in np.array(list(range(self.output_size))).astype(str)
})
else:
self.FCN_total_patients = nn.Linear(len(self.continents)*self.output_size, self.output_size)
def forward(self, x, aux):
"""
x: one day with countries {country_name: data of shape (14, feature_len)}
"""
countries_hidden = {}
for c in self.countries:
x_c = torch.as_tensor(x[c], dtype=torch.float).cuda()
x_c[torch.isnan(x_c)] = 0
x_c[torch.isinf(x_c)] = 0
out, (h_0, c_0) = self.LSTM_countries[c](x_c.unsqueeze(0)) # LSTM prediction of the country
c_ = self.country_continent[c] # Get the continent of the country
if self.is_aux:
h = F.relu(out[:, -1, :].squeeze(0))
h_ = torch.cat((h, torch.as_tensor(aux[c], dtype=torch.float).cuda()),0) # Concatenate auxiliary information
else :
h_ = F.relu(out[:, -1, :].squeeze(0)) # no auxiliary information
countries_hidden[c_] = torch.cat((countries_hidden[c_], h_), 0) if c_ in countries_hidden else h_ # Concat hidden vectors
if self.output_size > 1:
continent_patients_pred = torch.zeros(len(self.continents), self.output_size).cuda() # (#continents:6, output_size:14)
else : # self.output_size = 1
continent_patients_pred = torch.zeros(len(self.continents)).cuda() # (#continents,)
for idx, c in enumerate(self.continents):
continent_patients_pred[idx] = F.relu(self.FCN_continent_patients[c](countries_hidden[c]))
if self.output_size > 1:
total_patients_pred = []
# output, _ = self.lstm_total_patients(continent_patients_pred.transpose(1,0).contiguous().unsqueeze(0)) #(1, T, D)
# output = output.squeeze() #(T:14,D:6)
# print("output.size()", output.size())
output = continent_patients_pred.transpose(1,0).contiguous() # (T,D)
for idx,day in enumerate(range(output.size(0))):
total_patients_pred.append(self.FCN_total_patients[str(day)](output[idx]))
total_patients_pred = torch.cat(total_patients_pred, axis=0)
else :
total_patients_pred = self.FCN_total_patients(continent_patients_pred)
return continent_patients_pred, total_patients_pred
def train_COVID_AUX_Net(model, train_data_model2, train_data_AUX, train_target_continent,
train_target_total,test_data_model2,test_data_AUX, test_target_continent,
test_target_total, num_epoch, model_name="AUX_Net", beta=0.4, lr=None):
"""
@param target_total : (n, output_size : 14 or 7)
@param target_continet : (n, output_size : 14 or 7, #continent : 6)
"""
criterion = torch.nn.MSELoss()
optimizer = torch.optim.Adam(model.parameters(), lr=lr)
scheduler = torch.optim.lr_scheduler.MultiStepLR(optimizer, milestones = [20,50,80])
Loss_total = []
Valid_Loss = []
RMSE_Loss = []
model.cuda()
best_valid_loss = np.inf
for e in tqdm(range(num_epoch)):
## train
model.train()
for i in range(len(train_data_model2)):
continent_patients_pred, total_patients_pred = model(train_data_model2[i], train_data_AUX[i])
target_continent_i = torch.as_tensor(train_target_continent[i], dtype=torch.float)
target_total_i = torch.as_tensor(train_target_total[i], dtype=torch.float).unsqueeze(0)
target_continent_i[torch.isnan(target_continent_i)] = 0
target_continent_i[torch.isinf(target_continent_i)] = 0
target_total_i[torch.isnan(target_total_i)] = 0
target_total_i[torch.isinf(target_total_i)] = 0
optimizer.zero_grad()
loss1 = criterion(continent_patients_pred, target_continent_i.cuda().transpose(1,0))
loss2 = criterion(total_patients_pred, target_total_i.cuda().squeeze())
loss = loss1*beta + loss2*(1-beta)
loss.backward()
optimizer.step()
Loss_total.append(loss.item())
if i % 5 == 4 :
print("{e}th epoch train loss : {l}".format(e = e, l = loss))
scheduler.step()
if e % 20 == 19 :
torch.save(model.state_dict(), "{model_name}_{e}.pt".format(model_name = model_name,
e=i))
print(e,"th epoch: model saved!")
## validation
model.eval()
with torch.no_grad():
for i in range(len(test_data_model2)):
continent_patients_pred, total_patients_pred = model(test_data_model2[i], test_data_AUX[i])
target_continent_i = torch.as_tensor(test_target_continent[i], dtype=torch.float)
target_total_i = torch.as_tensor(test_target_total[i], dtype=torch.float).unsqueeze(0)
target_continent_i[torch.isnan(target_continent_i)] = 0
target_continent_i[torch.isinf(target_continent_i)] = 0
target_total_i[torch.isnan(target_total_i)] = 0
target_total_i[torch.isinf(target_total_i)] = 0
loss1 = criterion(continent_patients_pred, target_continent_i.cuda().transpose(1,0))
loss2 = criterion(total_patients_pred, target_total_i.cuda().squeeze())
valid_loss = loss1*beta + loss2*(1-beta)
Valid_Loss.append(valid_loss.item())
RMSE_Loss.append(torch.sqrt(loss2))
avg_val_loss = sum(Valid_Loss[-len(test_data_model2):])/len(test_data_model2)
avg_rmse_loss = sum(RMSE_Loss[-len(test_data_model2):])/len(test_data_model2)
print("{e}th epoch avg_valid_modelloss : {l} avg_rmse_loss : {rmse}".format(e = e, l = avg_val_loss,
rmse = avg_rmse_loss))
if avg_val_loss < best_valid_loss :
best_valid_loss = avg_val_loss
torch.save(model.state_dict(), "{model_name}_best.pt".format(model_name = model_name,))
print("best model saved!")
print("############ epoch finished ############\n")
return Loss_total, Valid_Loss, RMSE_Loss
class GlobalRNN(nn.Module):
def __init__(self, input_dim=6, hidden_size=None,is_tm=False):
super(GlobalRNN, self).__init__()
if is_tm:
self.rnn = nn.Sequential(
TransformerModel(ninp=input_dim, nhead=3, nhid=hidden_size, nlayers=1,),
nn.LSTM(input_dim, hidden_size, batch_first=True))
else :
self.rnn = nn.LSTM(input_dim, hidden_size, batch_first=True)
self.linear = nn.Linear(hidden_size, input_dim)
def forward(self, x):
out, hidden = self.rnn(x)
#print(out.shape)
#print(hidden.shape)
# output of shape (seq_len, batch, num_directions * hidden_size)
# h_n of shape (num_layers * num_directions, batch, hidden_size)
result = self.linear(F.relu(out[:, -1, :]))
return result
def train_globalrnn(model, data, target, valid_data, valid_target, num_epoch, batch_size, fname, lr =.03,):
data_length = len(data)
data_indices = list(range(data_length))
criterion = torch.nn.MSELoss()
optimizer = torch.optim.Adam(model.parameters(), lr=lr)
scheduler = torch.optim.lr_scheduler.MultiStepLR(optimizer, milestones = [20,50,80])
Loss = []
Valid_Loss = []
best_val_loss = np.inf
for i in tqdm(range(num_epoch)):
np.random.shuffle(data_indices)
model.train()
for iteration in range(int(data_length/batch_size)):
data_mini_batch = data[data_indices[iteration*batch_size:(iteration+1)*batch_size]]
target_mini_batch = target[data_indices[iteration*batch_size:(iteration+1)*batch_size]]
data_mini_batch = torch.as_tensor(data_mini_batch)
target_mini_batch = torch.as_tensor(target_mini_batch)
prediction = model(data_mini_batch)
optimizer.zero_grad()
loss = criterion(prediction, target_mini_batch)
loss.backward()
optimizer.step()
Loss.append(loss.item())
if iteration % 2 == 1 :
print("{e}th epoch train loss : {l}".format(e = i, l = loss))
scheduler.step()
if i % 20 == 19 :
torch.save(model.state_dict(), "{fname}_{e}.pt".format(fname=fname,e=i))
## validation
model.eval()
with torch.no_grad():
valid_data = torch.as_tensor(valid_data)
valid_target = torch.as_tensor(valid_target)
valid_prediction = model(valid_data)
valid_loss = criterion(valid_prediction, valid_target)
Valid_Loss.append(valid_loss)
print("{e}th epoch valid loss : {l}".format(e = i, l = valid_loss))
if valid_loss.item() < best_val_loss :
best_val_loss = valid_loss.item()
torch.save(model.state_dict(), "{fname}_best.pt".format(fname=fname))
print("best model saved!")
print("############ epoch finished ############\n")
return Loss, Valid_Loss
class PositionalEncoding(nn.Module):
def __init__(self, d_model=6, dropout=0.1, max_len=15):
super(PositionalEncoding, self).__init__()
self.dropout = nn.Dropout(p=dropout)
pe = torch.zeros(max_len, d_model)
position = torch.arange(0, max_len, dtype=torch.float).unsqueeze(1)
div_term = torch.exp(torch.arange(0, d_model, 2).float() * (-math.log(10000.0) / d_model))
pe[:, 0::2] = torch.sin(position * div_term)
pe[:, 1::2] = torch.cos(position * div_term)
pe = pe.unsqueeze(0).transpose(0, 1)# (1,15,6) batch_first :
pe = pe.to(torch.float32)
self.register_buffer('pe', pe)
def forward(self, x):
x = x.to(torch.float32)
x = x + self.pe[:x.size(0), :]
return self.dropout(x)
class TransformerModel(nn.Module):
def __init__(self, ninp, nhead, nhid, nlayers, dropout=0.5):
super(TransformerModel, self).__init__()
from torch.nn import TransformerEncoder, TransformerEncoderLayer
self.model_type = 'Transformer'
self.src_mask = None
self.pos_encoder = PositionalEncoding(ninp, dropout).to(torch.float32)
encoder_layers = TransformerEncoderLayer(ninp, nhead, nhid, dropout,).to(torch.float32)
self.transformer_encoder = TransformerEncoder(encoder_layers, nlayers,).to(torch.float32)
self.ninp = ninp
def forward(self, src):
"""
src : (N, T, D) = (1,14,6)
"""
src = src.transpose(0,1).contiguous() # (T, N, D) : (14,1,6)
src = src * math.sqrt(self.ninp)
src = self.pos_encoder(src)
src = src.to(torch.float32)
output = self.transformer_encoder(src,) #self.src_mask : we dont need attn mask! bc of the same length data
output = output.transpose(0,1).contiguous() # (N, T, D) = (1,14,6)
return output.to(torch.float32)