-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathCBBA.py
394 lines (331 loc) · 10.3 KB
/
CBBA.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
import numpy as np
import copy
class CBBA_agent():
def __init__(self, id = None, vel=None, task_num = None, agent_num = None, L_t = None):
self.task_num = task_num
self.agent_num = agent_num
# Agent information
self.id = id
self.vel = vel
# Local Winning Agent List
self.z = np.ones(self.task_num, dtype=np.int8) * self.id
# Local Winning Bid List
self.y = np.array([ 0 for _ in range(self.task_num)], dtype=np.float64)
# Bundle
self.b = []
# Path
self.p = []
# Maximum Task Number
self.L_t = L_t
# Local Clock
self.time_step = 0
# Time Stamp List
self.s = {a:self.time_step for a in range(self.agent_num)}
# This part can be modified depend on the problem
self.state = np.random.uniform(low=0, high=1, size=(1,2)) # Agent State (Position)
self.c = np.zeros(self.task_num) # Initial Score (Euclidean Distance)
# socre function parameters
self.Lambda = 0.95
self.c_bar = np.ones(self.task_num)
def tau(self,j):
# Estimate time agent will take to arrive at task j's location
# This function can be used in later
pass
def set_state(self, state):
"""
Set state of agent
"""
self.state = state
def send_message(self):
"""
Return local winning bid list
[output]
y: winning bid list (list:task_num)
z: winning agent list (list:task_num)
s: Time Stamp List (Dict:{agent_id:update_time})
"""
return self.y.tolist(), self.z.tolist(), self.s
def receive_message(self, Y):
self.Y = Y
def build_bundle(self, task):
"""
Construct bundle and path list with local information
"""
J = [j for j in range(self.task_num)]
while len(self.b) < self.L_t:
# Calculate S_p for constructed path list
S_p = 0
if len(self.p) > 0:
distance_j = 0
distance_j += np.linalg.norm(self.state.squeeze()-task[self.p[0]])
S_p += (self.Lambda**(distance_j/self.vel)) * self.c_bar[self.p[0]]
for p_idx in range(len(self.p)-1):
distance_j += np.linalg.norm(task[self.p[p_idx]]-task[self.p[p_idx+1]])
S_p += (self.Lambda**(distance_j/self.vel)) * self.c_bar[self.p[p_idx+1]]
# Calculate c_ij for each task j
best_pos = {}
for j in J:
c_list = []
if j in self.b: # If already in bundle list
self.c[j] = 0 # Minimum Score
else:
for n in range(len(self.p)+1):
p_temp = copy.deepcopy(self.p)
p_temp.insert(n,j)
c_temp = 0
distance_j = 0
distance_j += np.linalg.norm(self.state.squeeze()-task[p_temp[0]])
c_temp += (self.Lambda**(distance_j/self.vel)) * self.c_bar[p_temp[0]]
if len(p_temp) > 1:
for p_loc in range(len(p_temp)-1):
distance_j += np.linalg.norm(task[p_temp[p_loc]]-task[p_temp[p_loc+1]])
c_temp += (self.Lambda**(distance_j/self.vel)) * self.c_bar[p_temp[p_loc+1]]
c_jn = c_temp-S_p
c_list.append(c_jn)
max_idx = np.argmax(c_list)
c_j = c_list[max_idx]
self.c[j] = c_j
best_pos[j] = max_idx
h = (self.c > self.y)
if sum(h)==0:# No valid task
break
self.c[~h] = 0
J_i = np.argmax(self.c)
n_J = best_pos[J_i]
self.b.append(J_i)
self.p.insert(n_J,J_i)
self.y[J_i] = self.c[J_i]
self.z[J_i] = self.id
def update_task(self):
"""
[input]
Y: winning bid lists from neighbors (dict:{neighbor_id:(winning bid_list, winning agent list, time stamp list)})
time: for simulation,
"""
old_p = copy.deepcopy(self.p)
id_list = list(self.Y.keys())
id_list.insert(0, self.id)
# Update time list
for id in list(self.s.keys()):
if id in id_list:
self.s[id] = self.time_step
else:
s_list = []
for neighbor_id in id_list[1:]:
s_list.append(self.Y[neighbor_id][2][id])
if len(s_list) > 0:
self.s[id] = max(s_list)
## Update Process
for j in range(self.task_num):
for k in id_list[1:]:
y_k = self.Y[k][0]
z_k = self.Y[k][1]
s_k = self.Y[k][2]
z_ij = self.z[j]
z_kj = z_k[j]
y_kj = y_k[j]
i = self.id
y_ij = self.y[j]
## Rule Based Update
# Rule 1~4
if z_kj == k:
# Rule 1
if z_ij == self.id:
if y_kj > y_ij:
self.__update(j,y_kj,z_kj)
elif abs(y_kj - y_ij) < np.finfo(float).eps: # Tie Breaker
if k < self.id:
self.__update(j,y_kj,z_kj)
else:
self.__leave()
# Rule 2
elif z_ij == k:
self.__update(j,y_kj,z_kj)
# Rule 3
elif z_ij != -1:
m = z_ij
if (s_k[m] > self.s[m]) or (y_kj > y_ij):
self.__update(j,y_kj,z_kj)
elif abs(y_kj-y_ij) < np.finfo(float).eps: # Tie Breaker
if k < self.id:
self.__update(j,y_kj,z_kj)
# Rule 4
elif z_ij == -1:
self.__update(j,y_kj,z_kj)
else:
raise Exception("Error while updating")
# Rule 5~8
elif z_kj == i:
# Rule 5
if z_ij == i:
self.__leave()
# Rule 6
elif z_ij == k:
self.__reset(j)
# Rule 7
elif z_ij != -1:
m = z_ij
if s_k[m] > self.s[m]:
self.__reset(j)
# Rule 8
elif z_ij == -1:
self.__leave()
else:
raise Exception("Error while updating")
# Rule 9~13
elif z_kj != -1:
m = z_kj
# Rule 9
if z_ij == i:
if (s_k[m]>=self.s[m]) and (y_kj > y_ij):
self.__update(j,y_kj,z_kj)
elif (s_k[m]>=self.s[m]) and (abs(y_kj-y_ij) < np.finfo(float).eps): # Tie Breaker
if m < self.id:
self.__update(j,y_kj,z_kj)
# Rule 10
elif z_ij == k:
if (s_k[m]>self.s[m]):
self.__update(j,y_kj,z_kj)
else:
self.__reset(j)
# Rule 11
elif z_ij == m:
if (s_k[m] > self.s[m]):
self.__update(j,y_kj,z_kj)
# Rule 12
elif z_ij != -1:
n = z_ij
if (s_k[m] > self.s[m]) and (s_k[n] > self.s[n]):
self.__update(j,y_kj,z_kj)
elif (s_k[m] > self.s[m]) and (y_kj > y_ij):
self.__update(j,y_kj,z_kj)
elif (s_k[m]>self.s[m]) and (abs(y_kj-y_ij) < np.finfo(float).eps): # Tie Breaker
if m < n:
self.__update(j,y_kj,z_kj)
elif (s_k[n]>self.s[n]) and (self.s[m]>s_k[m]):
self.__update(j,y_kj,z_kj)
# Rule 13
elif z_ij == -1:
if (s_k[m] > self.s[m]):
self.__update(j,y_kj,z_kj)
else:
raise Exception("Error while updating")
# Rule 14~17
elif z_kj == -1:
# Rule 14
if z_ij == i:
self.__leave()
# Rule 15
elif z_ij == k:
self.__update(j,y_kj,z_kj)
# Rule 16
elif z_ij != -1:
m = z_ij
if s_k[m] > self.s[m]:
self.__update(j,y_kj,z_kj)
# Rule 17
elif z_ij == -1:
self.__leave()
else:
raise Exception("Error while updating")
else:
raise Exception("Error while updating")
n_bar = len(self.b)
# Get n_bar
for n in range(len(self.b)):
b_n = self.b[n]
if self.z[b_n] != self.id:
n_bar = n
break
b_idx1 = copy.deepcopy(self.b[n_bar+1:])
if len(b_idx1) > 0:
self.y[b_idx1] = 0
self.z[b_idx1] = -1
if n_bar < len(self.b):
del self.b[n_bar:]
self.p = []
for task in self.b:
self.p.append(task)
self.time_step += 1
converged = False
if old_p == self.p:
converged = True
return converged
def __update(self, j, y_kj, z_kj):
"""
Update values
"""
self.y[j] = y_kj
self.z[j] = z_kj
def __reset(self, j):
"""
Reset values
"""
self.y[j] = 0
self.z[j] = -1 # -1 means "none"
def __leave(self):
"""
Do nothing
"""
pass
if __name__=="__main__":
import matplotlib.pyplot as plt
np.random.seed(10)
task_num = 10
robot_num = 3
task = np.random.uniform(low=0,high=1,size=(task_num,2))
# task = np.array([[0,1],[1,1],[1,2]])
robot_list = [CBBA_agent(id=i, vel=1, task_num=task_num, agent_num=robot_num, L_t=task.shape[0]) for i in range(robot_num)]
# robot_list[0].state = np.array([[0,0]])
# robot_list[1].state = np.array([[1,0]])
# Network Initialize
G = np.ones((robot_num, robot_num)) # Fully connected network
# G[0,1]=0
# G[1,0]=0
t = 0 # Iteration number
while True:
converged_list = [] # Converged List
print("==Iteration {}==".format(t))
## Phase 1: Auction Process
print("Auction Process")
for robot in robot_list:
# select task by local information
robot.build_bundle(task)
print("Bundle")
for robot in robot_list:
print(robot.b)
print("Path")
for robot in robot_list:
print(robot.p)
## Communication stage
print("Communicating...")
# Send winning bid list to neighbors (depend on env)
message_pool = [robot.send_message() for robot in robot_list]
for robot_id, robot in enumerate(robot_list):
# Recieve winning bidlist from neighbors
g = G[robot_id]
connected, = np.where(g==1)
connected = list(connected)
connected.remove(robot_id)
if len(connected) > 0:
Y = {neighbor_id:message_pool[neighbor_id] for neighbor_id in connected}
else:
Y = None
robot.receive_message(Y)
## Phase 2: Consensus Process
print("Consensus Process")
for robot in robot_list:
# Update local information and decision
if Y is not None:
converged = robot.update_task()
converged_list.append(converged)
print("Bundle")
for robot in robot_list:
print(robot.b)
print("Path")
for robot in robot_list:
print(robot.p)
t += 1
if sum(converged_list) == robot_num:
break
print("Finished")