forked from Hironsan/BossSensor
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathboss_train.py
180 lines (149 loc) · 7.23 KB
/
boss_train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
# -*- coding: utf-8 -*-
from __future__ import print_function
import random
import numpy as np
from sklearn.cross_validation import train_test_split
from keras.preprocessing.image import ImageDataGenerator
from keras.models import Sequential
from keras.layers import Dense, Dropout, Activation, Flatten
from keras.layers import Convolution2D, MaxPooling2D
from keras.optimizers import SGD
from keras.utils import np_utils
from keras.models import load_model
from keras import backend as K
from boss_input import extract_data, resize_with_pad, IMAGE_SIZE
class Dataset(object):
def __init__(self):
self.X_train = None
self.X_valid = None
self.X_test = None
self.Y_train = None
self.Y_valid = None
self.Y_test = None
def read(self, img_rows=IMAGE_SIZE, img_cols=IMAGE_SIZE, img_channels=3, nb_classes=2):
images, labels = extract_data('./data/')
labels = np.reshape(labels, [-1])
# numpy.reshape
X_train, X_test, y_train, y_test = train_test_split(images, labels, test_size=0.3, random_state=random.randint(0, 100))
X_valid, X_test, y_valid, y_test = train_test_split(images, labels, test_size=0.5, random_state=random.randint(0, 100))
if K.image_dim_ordering() == 'th':
X_train = X_train.reshape(X_train.shape[0], 3, img_rows, img_cols)
X_valid = X_valid.reshape(X_valid.shape[0], 3, img_rows, img_cols)
X_test = X_test.reshape(X_test.shape[0], 3, img_rows, img_cols)
input_shape = (3, img_rows, img_cols)
else:
X_train = X_train.reshape(X_train.shape[0], img_rows, img_cols, 3)
X_valid = X_valid.reshape(X_valid.shape[0], img_rows, img_cols, 3)
X_test = X_test.reshape(X_test.shape[0], img_rows, img_cols, 3)
input_shape = (img_rows, img_cols, 3)
# the data, shuffled and split between train and test sets
print('X_train shape:', X_train.shape)
print(X_train.shape[0], 'train samples')
print(X_valid.shape[0], 'valid samples')
print(X_test.shape[0], 'test samples')
# convert class vectors to binary class matrices
Y_train = np_utils.to_categorical(y_train, nb_classes)
Y_valid = np_utils.to_categorical(y_valid, nb_classes)
Y_test = np_utils.to_categorical(y_test, nb_classes)
X_train = X_train.astype('float32')
X_valid = X_valid.astype('float32')
X_test = X_test.astype('float32')
X_train /= 255
X_valid /= 255
X_test /= 255
self.X_train = X_train
self.X_valid = X_valid
self.X_test = X_test
self.Y_train = Y_train
self.Y_valid = Y_valid
self.Y_test = Y_test
class Model(object):
FILE_PATH = './store/model.h5'
def __init__(self):
self.model = None
def build_model(self, dataset, nb_classes=2):
self.model = Sequential()
self.model.add(Convolution2D(32, 3, 3, border_mode='same', input_shape=dataset.X_train.shape[1:]))
self.model.add(Activation('relu'))
self.model.add(Convolution2D(32, 3, 3))
self.model.add(Activation('relu'))
self.model.add(MaxPooling2D(pool_size=(2, 2)))
self.model.add(Dropout(0.25))
self.model.add(Convolution2D(64, 3, 3, border_mode='same'))
self.model.add(Activation('relu'))
self.model.add(Convolution2D(64, 3, 3))
self.model.add(Activation('relu'))
self.model.add(MaxPooling2D(pool_size=(2, 2)))
self.model.add(Dropout(0.25))
self.model.add(Flatten())
self.model.add(Dense(512))
self.model.add(Activation('relu'))
self.model.add(Dropout(0.5))
self.model.add(Dense(nb_classes))
self.model.add(Activation('softmax'))
self.model.summary()
def train(self, dataset, batch_size=32, nb_epoch=40, data_augmentation=True):
# let's train the model using SGD + momentum (how original).
sgd = SGD(lr=0.01, decay=1e-6, momentum=0.9, nesterov=True)
self.model.compile(loss='categorical_crossentropy',
optimizer=sgd,
metrics=['accuracy'])
if not data_augmentation:
print('Not using data augmentation.')
self.model.fit(dataset.X_train, dataset.Y_train,
batch_size=batch_size,
nb_epoch=nb_epoch,
validation_data=(dataset.X_valid, dataset.Y_valid),
shuffle=True)
else:
print('Using real-time data augmentation.')
# this will do preprocessing and realtime data augmentation
datagen = ImageDataGenerator(
featurewise_center=False, # set input mean to 0 over the dataset
samplewise_center=False, # set each sample mean to 0
featurewise_std_normalization=False, # divide inputs by std of the dataset
samplewise_std_normalization=False, # divide each input by its std
zca_whitening=False, # apply ZCA whitening
rotation_range=20, # randomly rotate images in the range (degrees, 0 to 180)
width_shift_range=0.2, # randomly shift images horizontally (fraction of total width)
height_shift_range=0.2, # randomly shift images vertically (fraction of total height)
horizontal_flip=True, # randomly flip images
vertical_flip=False) # randomly flip images
# compute quantities required for featurewise normalization
# (std, mean, and principal components if ZCA whitening is applied)
datagen.fit(dataset.X_train)
# fit the model on the batches generated by datagen.flow()
self.model.fit_generator(datagen.flow(dataset.X_train, dataset.Y_train,
batch_size=batch_size),
samples_per_epoch=dataset.X_train.shape[0],
nb_epoch=nb_epoch,
validation_data=(dataset.X_valid, dataset.Y_valid))
def save(self, file_path=FILE_PATH):
print('Model Saved.')
self.model.save(file_path)
def load(self, file_path=FILE_PATH):
print('Model Loaded.')
self.model = load_model(file_path)
def predict(self, image):
if image.shape != (1, 3, IMAGE_SIZE, IMAGE_SIZE):
image = resize_with_pad(image)
image = image.reshape((1, 3, IMAGE_SIZE, IMAGE_SIZE))
image = image.astype('float32')
image /= 255
result = self.model.predict_proba(image)
print(result)
result = self.model.predict_classes(image)
return result[0]
def evaluate(self, dataset):
score = self.model.evaluate(dataset.X_test, dataset.Y_test, verbose=0)
print("%s: %.2f%%" % (self.model.metrics_names[1], score[1] * 100))
if __name__ == '__main__':
dataset = Dataset()
dataset.read()
model = Model()
model.build_model(dataset)
model.train(dataset, nb_epoch=10)
model.save()
model = Model()
model.load()
model.evaluate(dataset)