Analyze field types from data in string
format, e.g. uploaded csv.
Assign type
, tableFieldIndex
and format
(timestamp only) to each field
Parameters
Examples
import {getFieldsFromData} from '@kepler.gl/processors';
const data = [{
time: '2016-09-17 00:09:55',
value: '4',
surge: '1.2',
isTrip: 'true',
zeroOnes: '0'
}, {
time: '2016-09-17 00:30:08',
value: '3',
surge: null,
isTrip: 'false',
zeroOnes: '1'
}, {
time: null,
value: '2',
surge: '1.3',
isTrip: null,
zeroOnes: '1'
}];
const fieldOrder = ['time', 'value', 'surge', 'isTrip', 'zeroOnes'];
const fields = getFieldsFromData(data, fieldOrder);
// fields = [
// {name: 'time', format: 'YYYY-M-D H:m:s', tableFieldIndex: 1, type: 'timestamp'},
// {name: 'value', format: '', tableFieldIndex: 4, type: 'integer'},
// {name: 'surge', format: '', tableFieldIndex: 5, type: 'real'},
// {name: 'isTrip', format: '', tableFieldIndex: 6, type: 'boolean'},
// {name: 'zeroOnes', format: '', tableFieldIndex: 7, type: 'integer'}];
Returns Array<Object> formatted fields
Process csv data, output a data object with {fields: [], rows: []}
.
The data object can be wrapped in a dataset
and pass to addDataToMap
Parameters
rawData
string raw csv string
Examples
import {processCsvData} from '@kepler.gl/processors';
const testData = `gps_data.utc_timestamp,gps_data.lat,gps_data.lng,gps_data.types,epoch,has_result,id,time,begintrip_ts_utc,begintrip_ts_local,date
2016-09-17 00:09:55,29.9900937,31.2590542,driver_analytics,1472688000000,False,1,2016-09-23T00:00:00.000Z,2016-10-01 09:41:39+00:00,2016-10-01 09:41:39+00:00,2016-09-23
2016-09-17 00:10:56,29.9927699,31.2461142,driver_analytics,1472688000000,False,2,2016-09-23T00:00:00.000Z,2016-10-01 09:46:37+00:00,2016-10-01 16:46:37+00:00,2016-09-23
2016-09-17 00:11:56,29.9907261,31.2312742,driver_analytics,1472688000000,False,3,2016-09-23T00:00:00.000Z,,,2016-09-23
2016-09-17 00:12:58,29.9870074,31.2175827,driver_analytics,1472688000000,False,4,2016-09-23T00:00:00.000Z,,,2016-09-23`
const dataset = {
info: {id: 'test_data', label: 'My Csv'},
data: processCsvData(testData)
};
dispatch(addDataToMap({
datasets: [dataset],
options: {centerMap: true, readOnly: true}
}));
Returns Object data object {fields: [], rows: []}
Process GeoJSON FeatureCollection
,
output a data object with {fields: [], rows: []}
.
The data object can be wrapped in a dataset
and pass to addDataToMap
Parameters
rawData
Object raw geojson feature collection
Examples
import {addDataToMap} from '@kepler.gl/actions';
import {processGeojson} from '@kepler.gl/processors';
const geojson = {
"type" : "FeatureCollection",
"features" : [{
"type" : "Feature",
"properties" : {
"capacity" : "10",
"type" : "U-Rack"
},
"geometry" : {
"type" : "Point",
"coordinates" : [ -71.073283, 42.417500 ]
}
}]
};
dispatch(addDataToMap({
datasets: {
info: {
label: 'Sample Taxi Trips in New York City',
id: 'test_trip_data'
},
data: processGeojson(geojson)
}
}));
Returns Object dataset containing fields
and rows
Process saved kepler.gl json to be pass to addDataToMap
.
The json object should contain datasets
and config
.
Parameters
Examples
import {addDataToMap} from '@kepler.gl/actions';
import {processKeplerglJSON} from '@kepler.gl/processors';
dispatch(addDataToMap(processKeplerglJSON(keplerGlJson)));
Returns Object datasets and config {datasets: {}, config: {}}
Process data where each row is an object, output can be passed to addDataToMap
Parameters
Examples
import {addDataToMap} from '@kepler.gl/actions';
import {processRowObject} from '@kepler.gl/processors';
const data = [
{lat: 31.27, lng: 127.56, value: 3},
{lat: 31.22, lng: 126.26, value: 1}
];
dispatch(addDataToMap({
datasets: {
info: {label: 'My Data', id: 'my_data'},
data: processRowObject(data)
}
}));
Returns Object dataset containing fields
and rows