-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathBinSim.m
161 lines (142 loc) · 6.66 KB
/
BinSim.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
function [RLforHistb,pDetTotalb,binnedPercDetb,binnedCountsDetb] = ...
BinSim(sortedTLVec,diveDepth_mean,diveDepth_std,SL_mean,SL_std,...
descAngle_mean,descAngle_std,clickStart_mean,clickStart_std,...
descentPerc,minBeamAmp_mean,...
minBeamAmp_std,rotHorizDeg,...
rotHorizDeg_std,rotVertDegForage,rotVertDegForageStd,...
rotVertDegDive,rotVertDegDiveStd)
% Based on Kait Frasier BinMethod
%
global n N maxRange thresh RLbins binVec ...
nrr rd_all rr rr_int sd thisAngle %Global for TL calculation
RLforHistb = [];
pDetTotalb = nan(n,1);
binnedCountsDetb = nan(n,length(binVec)-1);
binnedPercDetb = nan(n,length(binVec)-1);
%
for itr_n = 1:n % number of simulations loop
if rem(itr_n,100) == 0
fprintf('TL computation %d of %d\n', itr_n, n)
end
%%%%% Location Computation %%%%%
% rand location
randVec = ceil(rand(2,N)'.*repmat([2*maxRange, 2*maxRange], [N, 1]))...
- repmat([maxRange, maxRange], [N, 1]);
[theta, rho] = cart2pol(randVec(:,1),randVec(:,2)); % convert to polar coord.
clear randVec % trying to save on memory
% trim out the locations that are beyond the max range (corners of the
% 2*maxRange X 2*maxRange square, since now we are using a pi*maxRange^2
% circle)
jjj = 1;
rho2 = [];
theta2 = [];
for iii = 1:length(rho)
if rho(iii) < maxRange
rho2(jjj,1) = rho(iii);
theta2(jjj,1) = theta(iii);
jjj = jjj+1;
end
end
thetaDeg = make360(theta2*180/pi);
clear theta
% go from angle to ref indices
[angleRef,radRef] = angle_ref_comp(thetaDeg,rho2,thisAngle);
%%%%% Depth Computation %%%%%
% Compute bottom depth at each randomly selected point
count0 = 1;
tempDepth = zeros(size(angleRef));
keepPoint = ones(size(angleRef));
diveDepthRef = diveDepth_mean(itr_n) + diveDepth_std(itr_n)...
*randn(size(angleRef));
% Find points that are above surface or below bottom and correct them
flyingWhaleIdx = find(diveDepthRef>=sd | diveDepthRef<1);
while ~isempty(flyingWhaleIdx)
diveDepthRef(flyingWhaleIdx) = diveDepth_mean(itr_n)...
+ diveDepth_std(itr_n)*randn(size(flyingWhaleIdx)); % add variation to dive depth,
flyingWhaleIdx = find(diveDepthRef>=sd | diveDepthRef<1);
end
% Assign last n% to a descent phase
% Choose a depth between start of clicking and destination depth
% determine off-axis angle
descentIdx = (floor((1-descentPerc(itr_n,1))*length(rho2))+1:length(rho2))';
dFactor = rand(size(descentIdx));
clickStartVec = clickStart_mean(itr_n,1) + clickStart_std(itr_n,1).*randn(size(descentIdx));
% Find points that are above surface or below bottom and correct them
flyingWhaleIdx2 = find(clickStartVec>=sd | clickStartVec<1);
while ~isempty(flyingWhaleIdx2)
clickStartVec(flyingWhaleIdx2) = clickStart_mean(itr_n,1)...
+ clickStart_std(itr_n,1).*randn(size(flyingWhaleIdx2)); % add variation to dive depth,
flyingWhaleIdx2 = find(clickStartVec>=sd | clickStartVec<1);
end
descentDelta = dFactor.* (diveDepthRef(descentIdx,:) - clickStartVec);
diveDepthRef(descentIdx,1) = clickStartVec + descentDelta;
%%%%% Beam Angle Computation %%%%%
% Assign random beam orientation in horizontal (all orientations equally likely)
randAngleVec = rand(size(rho2)).*359;
theta2deg = theta2.*180./pi;
partAngle = 180 + make180(thetaDeg);
totalOffAxisHoriz = make180(randAngleVec - partAngle');
onAxisHorz = abs(totalOffAxisHoriz) <= rotHorizDeg(itr_n,1) + ...
rotHorizDeg_std(itr_n,1).*randn(1,size(totalOffAxisHoriz,2));
% Compute vertical component of shift between animal and sensor (sd =
% sensor depth)
dZ = abs(sd - diveDepthRef);
zAngle_180 = ceil(abs(atand(dZ./rho2)));
zAngle_180(descentIdx,1) = ceil(abs(atand(dZ(descentIdx,:)./radRef(descentIdx,:))) - ...
descAngle_mean(itr_n,1) + (descAngle_std(itr_n,1).*randn(size(descentIdx,1),1)));
% If they're foraging, allow one amount of vertical rotation
% if diving, different amount
onAxisVert = abs(zAngle_180) <= rotVertDegForage(itr_n,1) + ...
rotVertDegForageStd(itr_n,1)*randn(size(zAngle_180,1),1);
onAxisVert(descentIdx,1) = abs(zAngle_180(descentIdx,1) ) <= ...
(rotVertDegDive(itr_n,1) + rotVertDegDiveStd(itr_n,1)*randn(size(descentIdx,1),1));
% Compute variation to add to source level
SL_adj = SL_mean(itr_n,1) + (SL_std(itr_n,1)*randn(N,1));
% directVec = directivity_mean(itr_n,1)+(directivity_std(itr_n,1)*randn(N,1));
minAmp = minBeamAmp_mean(itr_n,1)+(minBeamAmp_std(itr_n,1)*randn(N,1));
%%%%% Transmission Loss Loop %%%%%
% initialize some variables
RL = nan(size(thetaDeg));
isheard = zeros(size(thetaDeg));
distTL = nan(size(thetaDeg));
%%%%% Transmission Loss Loop %%%%%
for itr2 = 1:length(thetaDeg)
% Compute location of this animal in the transmission loss matrix:
% Find which row you want to look at:
thisRd = rd_all{angleRef(itr2)};
[~,thisDepthIdx] = min(abs(thisRd - round(diveDepthRef(itr2))));
% Record the distance related portion of this transmission loss
thisSortedTL = real(sortedTLVec{angleRef(itr2)});
distTL(itr2) = thisSortedTL(thisDepthIdx,ceil(radRef(itr2)./rr_int));
% Add up all the sources of TL
if (onAxisVert(itr2)+onAxisHorz(itr2))==2
RL(itr2,1) = SL_adj(itr2) - distTL(itr2);
else
RL(itr2,1) = SL_adj(itr2) - distTL(itr2) - minAmp(itr2);
end
% Is the total TL less than the maximum allowed?
if thresh <= RL(itr2,1)
isheard(itr2,1) = 1; % detected it
end
end
pDetTotalb(itr_n,1) = sum(isheard)./length(isheard)';
detVsLoc = [thetaDeg, rho2, isheard];
totalSim = rho2';
detSim = rho2(isheard==1)';
RL_keep = RL(isheard==1);
RLforHistb(itr_n,:) = hist(RL_keep,RLbins);
% Compute detections in range bins, so you can make a histogram if desired
% Makes more sense for click-based model
% preallocate
binTot = zeros(length(binVec)-1,1);
binDet = zeros(length(binVec)-1,1);
for itr2 = 1:length(binVec)-1
binTot(itr2) = length(find(totalSim>binVec(itr2) & totalSim<binVec(itr2 +1)));
binDet(itr2) = length(find(detSim>binVec(itr2) & detSim<binVec(itr2 +1)));
end
thisPercent = binDet./binTot;
% save the bin counts to the overall set, so you can get means and variances per bin.
binnedPercDetb(itr_n,:) = thisPercent';
binnedCountsDetb(itr_n,:) = binDet';
% binnedCountsTot(itr_n,:) = binTot';
end