forked from taorunz/euler
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathTotient.v
85 lines (75 loc) · 2.18 KB
/
Totient.v
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
(* Correct Definition of φ *)
Require Import Utf8 Arith.
Import List List.ListNotations.
Require Import Misc Primes.
Require Import PTotient Primisc.
Definition coprimes n := filter (λ d, Nat.gcd n d =? 1) (seq 1 n).
Definition φ n := length (coprimes n).
Lemma coprimes_coprimes' :
∀ n, 2 ≤ n → coprimes n = coprimes' n.
Proof.
intros. unfold coprimes, coprimes'.
replace n with ((n - 1) + 1) at 1 by flia H.
rewrite seq_app.
replace (1 + (n - 1)) with n at 1 by flia H.
rewrite filter_app. simpl.
destruct (Nat.eqb_spec (Nat.gcd n n) 1).
- rewrite Nat.gcd_diag in *. flia H e.
- rewrite app_nil_r. reflexivity.
Qed.
Lemma φ_φ' :
∀ n, 2 ≤ n → φ n = φ' n.
Proof.
intros. unfold φ, φ'.
rewrite coprimes_coprimes' by flia H.
reflexivity.
Qed.
Theorem prime_φ :
∀ p, prime p → φ p = p - 1.
Proof.
intros.
rewrite <- prime_φ' by assumption.
apply φ_φ'. apply prime_ge_2. assumption.
Qed.
Theorem φ_multiplicative :
∀ m n,
Nat.gcd m n = 1 →
φ (m * n) = φ m * φ n.
Proof.
intros.
destruct (Nat.leb_spec 2 m).
destruct (Nat.leb_spec 2 n).
- assert (2 ≤ m * n) by flia H0 H1.
repeat rewrite φ_φ' by assumption.
rewrite φ'_multiplicative by assumption.
reflexivity.
- destruct n. rewrite Nat.gcd_0_r in H.
flia H H0. replace n with 0 by flia H1.
cbn. rewrite mult_1_r. rewrite mult_1_r.
reflexivity.
- destruct m. rewrite Nat.gcd_0_l in H.
rewrite mult_0_l. cbn. reflexivity.
replace m with 0 by flia H0.
rewrite mult_1_l. cbn. rewrite plus_0_r.
reflexivity.
Qed.
Theorem prime_pow_φ :
∀ p, prime p →
∀ k, k ≠ 0 → φ (p ^ k) = p ^ (k - 1) * φ p.
Proof.
intros.
assert (2 ≤ p ^ k).
{
apply le_trans with p.
apply prime_ge_2.
assumption.
rewrite <- Nat.pow_1_r at 1.
apply Nat.pow_le_mono_r.
apply prime_ge_2 in H. flia H.
flia H0.
}
rewrite φ_φ' by assumption.
rewrite prime_pow_φ' by assumption.
rewrite φ_φ'. reflexivity.
apply prime_ge_2. assumption.
Qed.