-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmd.py
executable file
·381 lines (322 loc) · 12.1 KB
/
md.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
#!/usr/bin/env python3
import numpy as np
import time
import os
from numba import njit,prange
from ase import visualize
from ase.build import stack
from ase.io import write
import numpy as np
from ase.build import bulk
np.random.seed(4) # debug
# hardcoded until numba improves support for classes
def initial_parameteres():
global Natoms,X0, n_a,n_b,n_c,box_sizes,box_half_sizes,Nsteps,cutoff,dump_step,log_step,velocity_zeroing_step,temp_ref,temp_step,Potential_formula,kB_true
global trajectory_file,trajectory_file_unwrapped, log_file
Natoms = 0 # will be set, also as global value in premain
X0=0
n_a = 3 #Natoms of primitive cell in a direction
n_b = 3 #Natoms of primitive cell in b direction
n_c = 3 #Natoms of primitive cell in c direction
box_sizes = [0,0,0] # from 0 to L in each direction. will be set, also as global value in premain
box_half_sizes = 0 # will be set, also as global value in premain
Nsteps = 10**5
cutoff = 3 #cut off
dump_step = 100
log_step = 10
velocity_zeroing_step =100
# dt = 0.0005
temp_ref = 20 # reference tempreature in Kelvin
temp_step = 100 # thermostat every N steps
Potential_formula= 'LJ' # Potential type 'LJ' or 'Morse'
kB_true = 1.38064852e-23 #m2 kg s-2 K-1
trajectory_file = "traj.xyz"
trajectory_file_unwrapped = "traj_unwrapped.xyz"
log_file = "output.dat"
# constants
# kBTrue = 1.38064852e-23 #m2 kg s-2 K-1
# epsilon_True = 1.65e-21 #J
# sigma_True = 3.4e-10 #m
global force,potential_energy
global D0,r0,alpha,electronvolt_to_joules,epsilon_true,sigma_true
global mass,tau,dt
if Potential_formula == 'Morse':
D0 = 0.3429 # ev ## D in Morse potential ## FOR Copper ##
r0 = 2.866e-10 # meter
alpha = 1.3588e10 # 1/meter
# map to LJ units in order to avoid changing the code :)
electronvolt_to_joules = 1.60218e-19
epsilon_true = D0 * electronvolt_to_joules #J
sigma_true = r0 #meter
alphar0 = alpha*r0
force = force_Morse
potential_energy = potential_energy_Morse
if Potential_formula == 'LJ':
epsilon_true = 1.65e-21 #1.977e-21 #J
sigma_true = 3.4e-10 #3.348e-10 #m
mass = 6.6335209e-26 # kg
tau = (1.0)/np.sqrt(epsilon_true/(mass*sigma_true*sigma_true)) # time unit in second
dt = 0.001 * 1.0/tau * 1e-12
print("time unit is= {0} Seconds\n and timestep={1} femtoseconds".format(tau,tau*dt*1e15))
force = force_LJ
potential_energy = potential_energy_LJ
return None
@njit(parallel=False)
def pbc(X):
global box_sizes
X[:,0] -= box_sizes[0]*np.floor(X[:,0]/box_sizes[0])
X[:,1] -= box_sizes[1]*np.floor(X[:,1]/box_sizes[1])
X[:,2] -= box_sizes[2]*np.floor(X[:,2]/box_sizes[2])
return X
@njit(parallel=True)
def force_LJ(X,F):
F[:,:] = 0.0
# numpy vectorization slows down this loOP, CAREFUL!
for i in prange(Natoms):
for j in prange(i+1,Natoms):
# vectorize this
delta_x = X[i,0]-X[j,0]
delta_y = X[i,1]-X[j,1]
delta_z = X[i,2]-X[j,2]
delta_x += (-1 * box_sizes[0])*np.trunc(delta_x/box_half_sizes[0])
delta_y += (-1 * box_sizes[1])*np.trunc(delta_y/box_half_sizes[1])
delta_z += (-1 * box_sizes[2])*np.trunc(delta_z/box_half_sizes[2])
r2 = delta_x**2 + delta_y**2 + delta_z**2
if np.sqrt(r2)<cutoff:
f0= 48*(r2**-7 - 0.5*r2**-4)
fx = delta_x * f0
fy = delta_y * f0
fz = delta_z * f0
F[i, 0] += fx
F[i, 1] += fy
F[i, 2] += fz
F[j, 0] += -fx
F[j, 1] += -fy
F[j, 2] += -fz
return F
@njit(parallel=True)
def force_Morse(X, F):
global Natoms,alphar0, box_sizes,box_half_sizes,cutoff
F[:, :] = 0.0
for i in prange(Natoms):
for j in prange(i + 1, Natoms):
# vectorize this
delta_x = X[i, 0] - X[j, 0]
delta_y = X[i, 1] - X[j, 1]
delta_z = X[i, 2] - X[j, 2]
delta_x += (-1 * box_sizes[0]) * np.trunc(delta_x / box_half_sizes[0])
delta_y += (-1 * box_sizes[1]) * np.trunc(delta_y / box_half_sizes[1])
delta_z += (-1 * box_sizes[2]) * np.trunc(delta_z / box_half_sizes[2])
r = np.sqrt(delta_x ** 2 + delta_y ** 2 + delta_z ** 2)
if r < cutoff:
f0 = -2*alphar0 * (np.exp(-2*alphar0*(r-1)) - 2*alphar0*np.exp(-alphar0*(r-1)))
fx = delta_x * f0
fy = delta_y * f0
fz = delta_z * f0
F[i, 0] += fx
F[i, 1] += fy
F[i, 2] += fz
F[j, 0] += -fx
F[j, 1] += -fy
F[j, 2] += -fz
return F
@njit(parallel=False)
def potential_energy_LJ(X):
global Natoms,box_sizes,box_half_sizes,cutoff
E = 0.
for i in prange(Natoms):
for j in range(i+1,Natoms):
delta_x = X[i,0]-X[j,0]
delta_y = X[i,1]-X[j,1]
delta_z = X[i,2]-X[j,2]
delta_x += (-1 * box_sizes[0])*np.trunc(delta_x/box_half_sizes[0])
delta_y += (-1 * box_sizes[1])*np.trunc(delta_y/box_half_sizes[1])
delta_z += (-1 * box_sizes[2])*np.trunc(delta_z/box_half_sizes[2])
r = np.sqrt(delta_x**2 + delta_y**2 + delta_z**2)
if r<cutoff:
E += 4 * ( r**-12 - r**-6)
return E
@njit(parallel=False)
def potential_energy_Morse(X):
global Natoms,alphar0, box_sizes,box_half_sizes,cutoff
E = 0.
for i in prange(Natoms):
for j in range(i + 1, Natoms):
delta_x = X[i, 0] - X[j, 0]
delta_y = X[i, 1] - X[j, 1]
delta_z = X[i, 2] - X[j, 2]
delta_x += (-1 * box_sizes[0]) * np.trunc(delta_x / box_half_sizes[0])
delta_y += (-1 * box_sizes[1]) * np.trunc(delta_y / box_half_sizes[1])
delta_z += (-1 * box_sizes[2]) * np.trunc(delta_z / box_half_sizes[2])
r = np.sqrt(delta_x ** 2 + delta_y ** 2 + delta_z ** 2)
if r < cutoff:
E += np.exp(-2*alphar0 * (r - 1)) - 2 * np.exp(-alphar0*(r - 1))
return E
@njit()
def kinetic_energy(V):
E = .5*np.sum(V**2)
return E
@njit()
def temperature(V):
global Natoms
return kinetic_energy(V) * 2/(3*Natoms)
@njit()
def thermostat_velocity_rescaling(V):
global epsilon_true,kB_true,temp_ref
temp_true = epsilon_true/kB_true # converts to K
temp_now = temperature(V)*temp_true
lambda_ = np.sqrt(temp_ref/temp_now)
V *= lambda_
return V
@njit(parallel=False)
def velocity_verlet(V,X,F_0):
global dt,force
X += dt*V + F_0*dt**2/2
X = pbc(X) # apply periodic boundary conditions
F_1 = force(X, F_0)
V += (F_1+F_0) * dt / 2 # calculate velocities at halfstep
return V,X,F_1
def dump_xyz(f,f3,X,step):
global Natoms,dump_step
if step%dump_step!=0:
return None
atom_types = Natoms*[1]
xyz = np.array([atom_types,X[:,0],X[:,1],X[:,2]]).T
f.write(str(Natoms).encode())
f.write(b"\n atoms\n")
np.savetxt(f, xyz,fmt=('%i','%.8f','%.8f','%.8f'))
dump_xyz_unwrapped(f3,X, step)
return None
def dump_xyz_unwrapped(f3,X,step):
global Natoms,box_sizes,box_half_sizes,X0
X_unwrapped = np.copy(X)
displacement_M = X-X0
X_unwrapped[:,0] += (-1 * box_sizes[0]) * np.trunc(displacement_M[:,0] / box_half_sizes[0])
X_unwrapped[:,1] += (-1 * box_sizes[1]) * np.trunc(displacement_M[:,1] / box_half_sizes[1])
X_unwrapped[:,2] += (-1 * box_sizes[2]) * np.trunc(displacement_M[:,2] / box_half_sizes[2])
atom_types = Natoms*[1]
xyz = np.array([atom_types,X_unwrapped[:,0],X_unwrapped[:,1],X_unwrapped[:,2]]).T
f3.write(str(Natoms).encode())
f3.write(b"\n atoms\n")
np.savetxt(f3, xyz,fmt=('%i','%.8f','%.8f','%.8f'))
return None
def log(f,X,V,step):
global epsilon_true,kB_true,log_output,log_step
global potential_energy
# print(potential_energy(X))
if step%log_step!=0:
return None
temp_true = epsilon_true/kB_true
E_kin = kinetic_energy(V)*epsilon_true
E_pot = potential_energy(X)*epsilon_true
E_tot = E_kin+E_pot
temp_now = temperature(V)*temp_true
log_output = np.array([step,E_kin,E_pot,E_tot,temp_now])
#print(step,temp_now)
f.write("\t".join([str(a) for a in log_output])+"\n")
# np.savetxt(f2, log_output,fmt=('%i','%.8f','%.8f','%.8f','%.8f'))
return None
def create_atoms(n_a, n_b, n_c):
unitcell = bulk('Ar', 'fcc', np.power(2,(2./3)), cubic=True) #,orthorhombic=True) # ===> 1.122 sigma (from geometry)
# unitcell = bulk('Ar', 'fcc', 5.4, orthorhombic=True)
# visualize.view(unitcell)
# print unitcell.get_cell()
atoms_a = unitcell
for i in range(n_a - 1):
atoms_a = stack(atoms_a, unitcell, axis=0)
atoms_b = atoms_a
for j in range(n_b - 1):
atoms_b = stack(atoms_b, atoms_a, axis=1)
all_atoms = atoms_b
for k in range(n_c - 1):
all_atoms = stack(all_atoms, atoms_b, axis=2)
# print all_atoms.get_cell()
print("The cell is= ", all_atoms.get_cell())
# visualize.view(all_atoms)
return all_atoms
@njit(parallel=True)
def fix_COM_velocity(V):
global Natoms
# calculate CM velocity
# XMassVelocity, YMassVelocity = 0,0
XMassVelocity = np.sum(V[:, 0])
YMassVelocity = np.sum(V[:, 1])
ZMassVelocity = np.sum(V[:, 2])
# set CM velocity to zero
V[:, 0] -= XMassVelocity / Natoms
V[:, 1] -= YMassVelocity / Natoms
V[:, 2] -= ZMassVelocity / Natoms
return V
def initialize_VXF():
global n_a,n_b,n_c
global X0, Natoms
global box_sizes,box_half_sizes
atoms = create_atoms(n_a, n_b, n_c)
Natoms = atoms.get_number_of_atoms()
print('total number of atoms=', Natoms)
box_sizes = np.array([atoms.get_cell()[0][0], atoms.get_cell()[1][1], atoms.get_cell()[2][2] ] )
box_half_sizes = box_sizes / 2
# initialize positions, velocities and forces
X = atoms.get_positions()
X0 = np.copy(X)
# X = np.zeros((Natoms,3))
V = np.zeros((Natoms,3))
F = np.zeros((Natoms,3))
V = np.random.randn(np.shape(V)[0],np.shape(V)[1])
# print(V)
V = fix_COM_velocity(V)
V = thermostat_velocity_rescaling(V)
return V,X,F
def main():
global trajectory_file,trajectory_file_unwrapped,log_file
global Nsteps,temp_step,velocity_zeroing_step
global force
global initial_parameteres
initial_parameteres()
V,X,F = initialize_VXF()
#clean old files
try:
os.remove(trajectory_file)
os.remove(trajectory_file_unwrapped)
os.remove(log_file)
except OSError:
pass
f = open(trajectory_file, "ab")
f2 = open(trajectory_file_unwrapped, "ab")
f3 = open(log_file, "a")
dump_xyz(f,f2,X,0)
F = force(X,F)
t_start = time.time()
for step in range(Nsteps):
# print(V)
V,X,F = velocity_verlet(V,X,F)
dump_xyz(f,f2,X,step)
log(f3,X,V,step)
if step % velocity_zeroing_step == 0:
V = fix_COM_velocity(V)
if step % temp_step == 0:
V = thermostat_velocity_rescaling(V)
#print('yes')
t_end = time.time()
print("Time taken: {:.2f} seconds\n".format(t_end-t_start))
# close files
f.close()
f2.close()
f3.close()
return None
# object oriented approach, unforunately NUMBA doesnt support classes well so no OOP for now
# class MD(object):
# def __init__(self,Natoms=20,Nsteps=10**4,box_size=8,dt=10**-5,displacement=2.5,cutoff=2.5,dump_step=10**3,log_step=10**2,thermostat_step=100,temp_ref=160,temp_step=100):
# self.Natoms = Natoms #Natoms of atoms
# self.box_size = box_size # unitless 2D box length
# self.dt = dt # discretization
# self.Nsteps = Nsteps
# self.displacement = displacement
# self.cutoff = cutoff #cut off
# self.dump_step = dump_step
# self.log_step = log_step
# self.thermostat_step = thermostat_step
# self.temp_ref = temp_step
# self.temp_step = temp_step
if __name__ == '__main__':
main()