forked from pkhuong/martingale-cs
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmartingale-cs-asymmetric-stat_test.cc
146 lines (122 loc) · 3.96 KB
/
martingale-cs-asymmetric-stat_test.cc
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
#include "martingale-cs.h"
#include <algorithm>
#include <cmath>
#include <iostream>
#include <limits>
#include <random>
#include <utility>
#include "external/csm/csm.h"
#include "gmock/gmock.h"
#include "gtest/gtest.h"
namespace {
std::pair<double, double> EstimateQuantile(double quantile, size_t min_count,
double eps, std::vector<double> *observations)
{
const ssize_t lower_index = std::floor(quantile * observations->size()
+ martingale_cs_quantile_slop_lo(
quantile, observations->size(), min_count, std::log(eps)));
const size_t upper_index = std::ceil(quantile * observations->size()
+ martingale_cs_quantile_slop_hi(
quantile, observations->size(), min_count, std::log(eps)));
double low_value = -std::numeric_limits<double>::max();
double high_value = std::numeric_limits<double>::max();
if (lower_index >= 0 && !observations->empty()) {
std::nth_element(observations->begin(),
observations->begin() + lower_index, observations->end());
low_value = observations->at(lower_index);
}
if (upper_index < observations->size()) {
std::nth_element(observations->begin(),
observations->begin() + upper_index, observations->end());
high_value = observations->at(upper_index);
}
return std::make_pair(low_value, high_value);
}
// Runs the quantile estimation procedure for niter iterations at
// 1-eps confidence level. Returns whether the actual quantile was in
// range at all iterations.
bool QuantileInRange(const double quantile, const double eps, size_t niter)
{
static const size_t kMinObservations = 32;
const double expected = 100 * quantile;
std::random_device dev;
std::mt19937 rng(dev());
std::uniform_real_distribution<double> dist(0, 100);
std::vector<double> observations;
observations.reserve(niter);
for (size_t i = 0; i < niter; ++i) {
observations.push_back(dist(rng));
if (i >= kMinObservations) {
double lo, hi;
std::tie(lo, hi) = EstimateQuantile(
quantile, kMinObservations, eps, &observations);
if (expected < lo || expected > hi) {
std::cout << "fail after " << i + 1 << ": "
<< lo << " " << hi << "\n";
return false;
}
}
}
return true;
}
class QuantileTest : public testing::TestWithParam<double> {
};
// Compute a 95%-level quantile for a distribution that happens to be
// uniform [0, 100). Make sure the range does include the population
// quantile at least 95% of the time.
TEST_P(QuantileTest, IncludedInRange)
{
static const size_t kInnerIter = 20000;
static const size_t kMaxIter = 10000;
static const double eps = 2.5e-2;
const double quantile = GetParam();
#ifndef NDEBUG
{
static bool once = true;
if (once) {
once = false;
std::cout
<< "This test suite needs a few minutes in "
"optimized mode. "
"Debug mode may take for approximately ever."
<< std::endl;
}
}
#endif
std::cout << "Quantile width (fraction of sample size) for "
<< quantile << " at eps < " << eps << " after "
<< kInnerIter << " iterations: "
<< martingale_cs_quantile_slop_lo(
quantile, kInnerIter, 32, std::log(eps))
/ kInnerIter
<< ", "
<< martingale_cs_quantile_slop_hi(
quantile, kInnerIter, 32, std::log(eps))
/ kInnerIter
<< std::endl;
size_t successes = 0;
for (size_t i = 0; i < kMaxIter; ++i) {
if (QuantileInRange(quantile, eps, kInnerIter)) {
++successes;
}
const size_t total = i + 1;
if ((total % 100) == 0) {
std::cout << "Current: " << successes << " / "
<< total << " (" << 1.0 * successes / total
<< ")." << std::endl;
}
if (csm(total, 1.0 - eps, successes, std::log(1e-4),
nullptr)) {
std::cout << "Actual rate " << 1.0 * successes / total
<< "\n";
EXPECT_LE(1.0 - 1.0 * successes / total, eps)
<< successes << " / " << total;
return;
}
}
EXPECT_TRUE(false) << "Only " << successes << " successes out of "
<< kMaxIter << ".";
}
INSTANTIATE_TEST_SUITE_P(
QuantileTest, QuantileTest, testing::Values(0.05, 0.5, 0.75, 0.9, 0.99));
} // namespace