-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcmaTest.py
98 lines (87 loc) · 2.78 KB
/
cmaTest.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
import numpy as np
from ind2mass import stochTest
import cma
N = 3; n = 2 # people, bins
pi = [2.0/3.0, 1.0/3.0] # ideal stationary distribution
tol = 0.01
fitnessFunction = None
sigma0 = .25**n # ~1/4 of search domain width => try with .25 and (.25)**n
# build x0
x0 = np.zeros(n**2)
for i in range(n):
nxt = np.random.uniform(0,1,n)
x0[i*n:i*n+n] = nxt/sum(nxt)
def devectorize(vm, bins):
'''
INPUT:
vm :: NPArray<Float>
# bins^2-length vectorized P^I
bins :: Integer
# the number of bins
OUTPUT:
NPArray<NPArray<Float>>
# devectorized vm as bins-x-bins-matrix
'''
output = np.zeros([bins, bins])
col = 0
for i in xrange(0, len(vm), bins):
output[:,col] = vm[i:i+bins]
col += 1
return output
# testing
# test1 = [1,2,3,4,5,6,7,8,9,0,1,2,3,4,5,6,7,8,9,0]
# ans1 = np.transpose(np.array([[ 1., 2., 3., 4., 5., 6., 7., 8., 9., 0.],
# [ 1., 2., 3., 4., 5., 6., 7., 8., 9., 0.],
# [ 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.],
# [ 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.],
# [ 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.],
# [ 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.],
# [ 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.],
# [ 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.],
# [ 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.],
# [ 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]]))
# devectorize(l, 10)
# test1 = [1,2,3,4,5,6,7,8,9,0,1,2,3,4,5,6]
# ans2 = np.transpose(np.array([[ 1., 2., 3., 4.],
# [ 5., 6., 7., 8.],
# [ 9., 0., 1., 2.],
# [ 3., 4., 5., 6.]]))
# devectorize(l, 4)
def anyNeg(l):
for el in l:
if el < 0.0:
return True
return False
def corrEig(vm, corr, bins, tol):
'''
INPUT:
vm :: NPArray<Float>
# bins^2-length vectorized P^I
corr :: NPArray<Float>
# bins-length correct stationary distribution
bins :: Integer
# the number of bins
tol :: Float
# tolerance
OUTPUT:
Float
# The error between corr and the first eigenvector of vm
# If first eigenvalue is not within tol of 1.0, then np.NaN is returned
'''
mat = devectorize(vm, bins)
out = np.linalg.eig(mat)
eigenvalue1 = out[0][0]
# if first eigenvalue is not 1.0 or columns not probability distributions (between 0-1 and sum to 1)
if not abs(eigenvalue1 - 1.0) < tol or anyNeg(vm) or not stochTest(mat, tol=tol):
return np.NaN
else:
eigenvector1 = out[1][:,0]
return sum(abs(corr - eigenvector1)) # 1-D loss
#return corr - eigenvector1 # [bins]-D loss
f = cma.fitness_functions.FitnessFunctions()
preFit = lambda x: corrEig(x, pi, n, tol)
fitnessFunction = lambda x: f.fun_as_arg(x, preFit)
# result = cma.fmin(fitnessFunction, x0, sigma0)
# print result
def CMAES(fitFun, start_x, start_sig):
return cma.fmin(fitFun, start_x, start_sig)