-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathnaive.py
124 lines (115 loc) · 3.08 KB
/
naive.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
from ind2mass import *
from math import pi as PI
def NRS(N, n, pi, iterCols=None, iterInCol=10000, tol=TOL):
'''
INPUT:
N :: Integer
# population size
n :: Integer
# number of bins
pi :: NPArray<Float>
# optimal stationary distribution
OUTPUT:
NPArray<NPArray<Float>>
# P^(I) via Naive Random Search Method
'''
# initialization and normalization
if iterCols == None:
iterCols = n*10000
output = np.random.random((n,n))
for col in xrange(n):
output[:,col] /= sum(output[:,col])
out = np.linalg.eig(output)
n0s = np.zeros(n)
totalIts = iterCols; totalItsIn = iterInCol
while (not abs(out[0][0] - 1.0) < tol or not listMatch(out[1][:,0], pi)) and iterCols!=0:
#print 'iterCols', iterCols
for col in xrange(n):
p_old = n0s
iterInCol = totalItsIn
temp = output
while not listMatch(output[:,col], p_old) and iterInCol!=0:
#print 'iterInCol', iterInCol
# testPt = truncnorm.pdf(np.random.random(), 0.0, 1.0)
# next_try = truncnorm.pdf(testPt, 0.0, 1.0) # Line 5 in LaTeX
next_try = np.random.random((n,))
next_try /= sum(next_try) # Line 5 in LaTeX
temp[:,col] = next_try
out = np.linalg.eig(temp)
if np.linalg.norm(out[1][:,0] - pi)**2 < np.linalg.norm(p_old - pi)**2:
output = temp
p_old = output[:,col]
iterInCol -= 1
out = np.linalg.eig(output)
iterCols -= 1
return output
def GRS(N, n, pi, maxIters=n*10000, tol=TOL):
'''
INPUT:
N :: Integer
# population size
n :: Integer
# number of bins
pi :: NPArray<Float>
# optimal stationary distribution
OUTPUT:
NPArray<NPArray<Float>>
# P^(I) via Greedy Random Search Method
'''
# initialization and normalization
if maxIters == None:
maxIters = n*10000
output = np.random.random((n,n))
for col in xrange(n):
output[:,col] /= sum(output[:,col])
out = np.linalg.eig(output)
while not (abs(out[0][0] - 1.0) < tol and listMatch(out[1][:,0], pi)) and maxIters != 0: # Step 2
a = np.random.randint(0, high=n) # Step 3
v = np.random.random((n,)) # Step 4
c = 2*int(out[1][a,0] > pi[a]) - 1 # Step 5
output[a,:] = np.random.dirichlet(output[a,:] + c*v) # Step 6
for col in xrange(n):
output[:,col] /= sum(output[:,col]) # Step 7
out = np.linalg.eig(output)
maxIters -= 1
return output
algo = False
if algo:
print '\nNRS Tests:'
g = NRS
else:
print '\nGRS Tests:'
g = GRS
testpi = np.array([12, 1])/13.0
N = 3
n = 2
rho = 0.4 # correlation
print '\n'
ans = g(N, n, testpi)
print 'eigenvalue:', np.linalg.eig(ans)[0][0]
ev = np.linalg.eig(ans)[1][:,0]
print 'eigenvector:', ev/sum(ev)
#print np.linalg.eig(ans)
print 'pi', testpi
testpi = np.array([2, 10, 1])/13.0
N = 13
n = 3
rho = 0.4 # correlation
print '\n'
ans = g(N, n, testpi)
print 'eigenvalue:', np.linalg.eig(ans)[0][0]
ev = np.linalg.eig(ans)[1][:,0]
print 'eigenvector:', ev/sum(ev)
#print np.linalg.eig(ans)
print 'pi', testpi
testpi = np.array([2, 7, 0, 3, 1])/13.0
N = 13
n = 5
rho = 0.4 # correlation
print '\n'
ans = g(N, n, testpi)
print 'eigenvalue:', np.linalg.eig(ans)[0][0]
ev = np.linalg.eig(ans)[1][:,0]
print 'eigenvector:', ev/sum(ev)
#print np.linalg.eig(ans)
print 'pi', testpi