forked from peterroelants/peterroelants.github.io
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathindex.html
125 lines (107 loc) · 6.06 KB
/
index.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
---
layout: index_layout
title: Notes on machine learning
description: Implementations and insights on various machine learning algorithms. Generated from Python notebooks.
---
<div class="main-template">
<div class="container post_preview">
<h1>{{ page.title }}</h1>
<br>
<!-- Gaussian Processes -->
<div class="clearfix">
<a href="{% post_url 2019-01-05-gaussian-process-tutorial %}">
<img class="rounded-circle img-fluid float-left mr-2 img-padding" src="/images/gaussian_process.png" alt="RNN image" width="140" height="140">
</a>
<h2>Gaussian processes</h2>
<p>Blog series exploring Gaussian processes. Starts with building up an understanding of Gaussian procesess by implementing them from scratch in Python. Then goes to a practical example illustrating how to use a Gaussian process on a real-world problem using TensorFlow probability.</p>
</div>
<div class="text-center">
<a class="btn btn-outline-primary" href="{% post_url 2019-01-05-gaussian-process-tutorial %}" role="button">Understand Gaussian processes »</a>
<br>
</div>
<!-- Linear regression 4 ways -->
<div class="clearfix">
<a href="{% post_url 2018-10-22-linear-regression-four-ways %}">
<img class="rounded-circle img-fluid float-left mr-2 img-padding" src="/images/linear_regression_four_ways.png" alt="RNN image" width="140" height="140">
</a>
<h2>Regression quattro stagioni</h2>
<p>This post will explore the foundation of linear regression and implement four different methods of training a regression model on linear data: simple linear regression, ordinary least squares (OLS), gradient descent, and markov chain monte carlo (MCMC).</p>
</div>
<div class="text-center">
<a class="btn btn-outline-primary" href="{% post_url 2018-10-22-linear-regression-four-ways %}" role="button">Implement regression 4 different ways »</a>
<br>
</div>
<!-- Neural network implementation -->
<div class="clearfix">
<a href="{% post_url 2015-06-10-neural-network-implementation-part01 %}">
<img class="rounded-circle img-fluid float-left mr-2 img-padding" src="/images/ANN_preview.png" alt="ANN image" width="140" height="140">
</a>
<h2>How to implement a neural network</h2>
<p>Learn the basics of neural networks and how to implement them from scratch in Python. The tutorial starts with explaining gradient descent on the most basic models and goes along to explain hidden layers with non-linearities, backpropagation, and momentum. The math is explained along the way together with Python code examples.</p>
</div>
<div class="text-center">
<a class="btn btn-outline-primary" href="{% post_url 2015-06-10-neural-network-implementation-part01 %}" role="button">Implement a neural net »</a>
<br>
</div>
<!-- RNN Implementation -->
<div class="clearfix">
<a href="{% post_url 2015-09-27-rnn-implementation-part01 %}">
<img class="rounded-circle img-fluid float-left mr-2 img-padding" src="/images/RNN_preview.png" alt="RNN image" width="140" height="140">
</a>
<h2>How to implement a RNN</h2>
<p>Learn how to implement a recurrent neural network (RNN) in Python with the help of Numpy. The tutorial explains the basics of backpropagation-through-time and discusses some of the difficulties of training recurrent networks.</p>
</div>
<div class="text-center">
<a class="btn btn-outline-primary" href="{% post_url 2015-09-27-rnn-implementation-part01 %}" role="button">Implement a RNN »</a>
<br>
</div>
<!-- Multi-armed bandit Implementation -->
<div class="clearfix">
<a href="{% post_url 2018-09-26-multi-armed-bandit-implementation %}">
<img class="rounded-circle img-fluid float-left mr-2 img-padding" src="/images/bandit.png" alt="Multi-armed-bandit image" width="140" height="140">
</a>
<h2>Multi-armed bandit implementation</h2>
<p>Learn the basics of Bayesian multi-armed bandit models while implementing a simple example in Python.</p>
</div>
<div class="text-center">
<a class="btn btn-outline-primary" href="{% post_url 2018-09-26-multi-armed-bandit-implementation %}" role="button">Implement a multi-armed bandit »</a>
<br>
</div>
<!-- Cross entropy classification -->
<div class="clearfix">
<a href="{% post_url 2015-06-10-cross-entropy-logistic %}">
<img class="rounded-circle img-fluid float-left mr-2 img-padding" src="/images/logistic_preview.png" alt="RNN image" width="140" height="140">
</a>
<h2>Cross-entropy classification</h2>
<p> Introduction to the logistic and softmax classification functions and how to use them with the cross-entropy loss function.</p>
</div>
<div class="text-center">
<a class="btn btn-outline-primary" href="{% post_url 2015-06-10-cross-entropy-logistic %}" role="button">Learn about cross-entropy classification »</a>
<br>
</div>
<!-- Multivariate normal -->
<div class="clearfix">
<a href="{% post_url 2018-09-28-multivariate-normal-primer %}">
<img class="rounded-circle img-fluid float-left mr-2 img-padding" src="/images/bivariate_normal_preview.png" alt="multivariate normal image" width="140" height="140">
</a>
<h2>Multivariate normal distribution: a primer</h2>
<p>Introduction to the multivariate normal distribution that will show you how to represent, visualize, sample, and compute conditionals from this distribution.</p>
</div>
<div class="text-center">
<a class="btn btn-outline-primary" href="{% post_url 2018-09-28-multivariate-normal-primer %}" role="button">Learn about the multivariate normal »</a>
<br>
</div>
<!-- TF Estimator -->
<div class="clearfix">
<a href="https://medium.com/@peter.roelants/tensorflow-estimator-dataset-apis-caeb71e6e196">
<img class="rounded-circle img-fluid float-left mr-2 img-padding" src="https://cdn-images-1.medium.com/max/1200/1*cKG1LJvVTaWqSkYSyVqtsQ.png" alt="TF logo" width="140" height="140">
</a>
<h2>TensorFlow Estimator & Dataset APIs</h2>
<p>How to use TensorFlow's Estimator and Dataset APIs to train models.</p>
</div>
<div class="text-center">
<a class="btn btn-outline-primary" href="https://medium.com/@peter.roelants/tensorflow-estimator-dataset-apis-caeb71e6e196" role="button">TF's Estimator & Dataset APIs »</a>
<br>
</div>
</div>
</div>