-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathxrf_aggregator.py
270 lines (214 loc) · 8.15 KB
/
xrf_aggregator.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
import argparse
import locale
import timeit
from pathlib import Path
import pandas as pd
def validate_export_filename(export_filename, excel):
"""Ensure export extension matches flag, return corrected filename.
xlswriter won't export an Excel file unless the file extension is a
valid Excel file extension (xsls, xls). This script assumes the flag
indicates user intention, and will append a correct extension.
If not using the Excel flag, this ensures the filename ends in .csv.
Returns the validated/fixed export filename.
"""
if excel:
if export_filename.suffix not in [".xlsx", ".xls"]:
return export_filename.with_suffix(".xlsx")
else:
if export_filename.suffix != ".csv":
return export_filename.with_suffix(".csv")
return export_filename
def process_core_id(core_id):
"""This function splits all parts of a LacCore CoreID, casts the numeric
portions as ints (so sorting works properly), and returns a tuple with all
sortable parts separated. Used for sorting a directory list.
LacCore Core IDs are in the format
PROJECT-[LAKENAME][2DIGITYEAR]-[SITE][HOLE]-[CORE][TOOL]-SECTION
e.g. PROJ-LAK19-1A-1L-1
"""
parts = core_id.split(" ")[0].split("-")
return (
*parts[:2],
int(parts[2][:-1]),
parts[2][-1],
int(parts[3][:-1]),
parts[3][-1],
int(parts[-1]),
)
def generate_file_list(input_dir, verbose=False):
"""Comb through directories to generate list of files to combine.
Given the input directory, scan through all directories and collect
the XRF Excel files, skipping directories and files that don't match
our specific file structure pattern.
Returns a list of PurePath objects.
"""
if verbose:
print(f"Scanning subfolders of {input_dir} for .xslx files.")
file_list = []
p = Path(input_dir).iterdir()
dir_list = [
entry
for entry in p
if entry.is_dir()
and not entry.name.startswith(".")
and not "_xr" in entry.name.lower()
]
dir_list = sorted(dir_list, key=lambda d: process_core_id(d.name))
for d in dir_list:
p = Path(d).iterdir()
f_list = [
entry
for entry in p
if not entry.name.startswith(".")
and entry.is_file()
and entry.suffix == ".xlsx"
]
if len(f_list) != 1:
print(f"ERROR: {len(f_list)} files with extension .xlsx were found.")
print(f"Exactly one xslx file required in folder {d.name}.")
exit(1)
file_list.append(f_list[0])
if verbose:
print(f"Found data in {len(file_list)} folders to aggregate:")
for f in file_list:
print(f" {f.parts[-2]}")
print()
return file_list
def aggregate_xrf_data(
input_dir, out_filename, excel=False, sitehole=False, verbose=False
):
"""Aggregate cleaned data from different files and folders, export."""
if verbose:
start_time = timeit.default_timer()
input_dir = Path(input_dir)
out_filename = Path(out_filename)
export_filename = validate_export_filename(out_filename, excel)
if verbose and export_filename != out_filename:
print(f"Adjusted export filename to '{export_filename}'")
xrfs = generate_file_list(input_dir, verbose)
# does pandas need an initial column?
output = pd.DataFrame({"filename": []})
# need to specify a column order for export file
column_order = []
for xrf in xrfs:
if verbose:
print("Opening {}...".format(xrf.name), end="\r")
# load file, first two rows are junk data so start at row 3 (zero indexed)
df = pd.read_excel(xrf, header=2)
if verbose:
print("Loaded {} ".format(xrf.name))
if not column_order:
column_order = df.columns.values.tolist()
else:
new_elements = [
e for e in df.columns.values.tolist() if e not in column_order
]
if new_elements:
# preserve column order, but add new elements before last two columns (cr coh, cr incoh)
column_order = column_order[:-2] + new_elements + column_order[-2:]
if verbose:
print(
f"Additional element{'s' if len(new_elements) > 1 else ''} found: {', '.join(new_elements)}"
)
print()
output = output.append(df, sort=True)
# don't export column filename
column_order.remove("filename")
if verbose:
print()
if not sitehole:
export_path = input_dir / export_filename
print(f"Exporting data ({len(output)} rows) to {export_path}...", end="\r")
if excel:
output[column_order].to_excel(export_path, index=False)
else:
output[column_order].to_csv(
export_path,
index=False,
float_format="%g",
encoding=locale.getpreferredencoding(),
)
print(f"Exported data ({len(output)} rows) to {export_path} ")
else:
if "SectionID" not in df.columns.values.tolist():
print(
"ERROR: column 'SectionID' not found, must be present to export by SiteHole."
)
exit(1)
# create the sitehole column
output["shfe"] = output["SectionID"].str.split("-", expand=True)[2]
holes = output["shfe"].unique()
for hole in holes:
filtered_export_filename = (
".".join(export_filename.split(".")[:-1])
+ "-"
+ hole
+ "."
+ export_filename.split(".")[-1]
)
export_path = input_dir / filtered_export_filename
filtered_data = output.loc[output["shfe"] == hole]
data_columns = [
c for c in column_order if not all(filtered_data[c].isnull())
]
if verbose:
print(
f"Ignoring {len(column_order)-len(data_columns)} empty columns in SiteHole {hole}:"
)
print(
"\t", ", ".join(sorted(list(set(column_order) - set(data_columns))))
)
print(
f"Exporting data from SiteHole {hole} ({len(filtered_data)} rows) to {filtered_export_filename}...",
end="\r",
)
if excel:
filtered_data[data_columns].to_excel(
export_path,
index=False,
engine="xlsxwriter",
options={"strings_to_numbers": True},
)
else:
filtered_data[data_columns].to_csv(
export_path,
index=False,
float_format="%g",
encoding=locale.getpreferredencoding(),
)
print(
f"Exported data from SiteHole {hole} ({len(filtered_data)} rows) to {filtered_export_filename} "
)
if verbose:
end_time = timeit.default_timer()
print()
print("Completed in {} seconds".format(round(end_time - start_time, 2)))
if __name__ == "__main__":
parser = argparse.ArgumentParser(description="stuff")
parser.add_argument(
"input_directory", type=str, help="Directory containing the XRF Excel files."
)
parser.add_argument("output_filename", type=str, help="Name of the output file.")
parser.add_argument(
"-e",
"--excel",
action="store_true",
help="Export combined data as an xslx file.",
)
parser.add_argument(
"-s",
"--sitehole",
action="store_true",
help="Export data to multiple files, grouped by SiteHole.",
)
parser.add_argument(
"-v", "--verbose", action="store_true", help="Display troubleshooting info."
)
args = parser.parse_args()
aggregate_xrf_data(
input_dir=args.input_directory,
out_filename=args.output_filename,
excel=args.excel,
sitehole=args.sitehole,
verbose=args.verbose,
)