-
Notifications
You must be signed in to change notification settings - Fork 115
/
Copy pathgraph.py
123 lines (94 loc) · 4.03 KB
/
graph.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
"""Define a custom Reasoning and Action agent.
Works with a chat model with tool calling support.
"""
from datetime import datetime, timezone
from typing import Dict, List, Literal, cast
from langchain_core.messages import AIMessage
from langchain_core.runnables import RunnableConfig
from langgraph.graph import StateGraph
from langgraph.prebuilt import ToolNode
from react_agent.configuration import Configuration
from react_agent.state import InputState, State
from react_agent.tools import TOOLS
from react_agent.utils import load_chat_model
# Define the function that calls the model
async def call_model(
state: State, config: RunnableConfig
) -> Dict[str, List[AIMessage]]:
"""Call the LLM powering our "agent".
This function prepares the prompt, initializes the model, and processes the response.
Args:
state (State): The current state of the conversation.
config (RunnableConfig): Configuration for the model run.
Returns:
dict: A dictionary containing the model's response message.
"""
configuration = Configuration.from_runnable_config(config)
# Initialize the model with tool binding. Change the model or add more tools here.
model = load_chat_model(configuration.model).bind_tools(TOOLS)
# Format the system prompt. Customize this to change the agent's behavior.
system_message = configuration.system_prompt.format(
system_time=datetime.now(tz=timezone.utc).isoformat()
)
# Get the model's response
response = cast(
AIMessage,
await model.ainvoke(
[{"role": "system", "content": system_message}, *state.messages], config
),
)
# Handle the case when it's the last step and the model still wants to use a tool
if state.is_last_step and response.tool_calls:
return {
"messages": [
AIMessage(
id=response.id,
content="Sorry, I could not find an answer to your question in the specified number of steps.",
)
]
}
# Return the model's response as a list to be added to existing messages
return {"messages": [response]}
# Define a new graph
builder = StateGraph(State, input=InputState, config_schema=Configuration)
# Define the two nodes we will cycle between
builder.add_node(call_model)
builder.add_node("tools", ToolNode(TOOLS))
# Set the entrypoint as `call_model`
# This means that this node is the first one called
builder.add_edge("__start__", "call_model")
def route_model_output(state: State) -> Literal["__end__", "tools"]:
"""Determine the next node based on the model's output.
This function checks if the model's last message contains tool calls.
Args:
state (State): The current state of the conversation.
Returns:
str: The name of the next node to call ("__end__" or "tools").
"""
last_message = state.messages[-1]
if not isinstance(last_message, AIMessage):
raise ValueError(
f"Expected AIMessage in output edges, but got {type(last_message).__name__}"
)
# If there is no tool call, then we finish
if not last_message.tool_calls:
return "__end__"
# Otherwise we execute the requested actions
return "tools"
# Add a conditional edge to determine the next step after `call_model`
builder.add_conditional_edges(
"call_model",
# After call_model finishes running, the next node(s) are scheduled
# based on the output from route_model_output
route_model_output,
)
# Add a normal edge from `tools` to `call_model`
# This creates a cycle: after using tools, we always return to the model
builder.add_edge("tools", "call_model")
# Compile the builder into an executable graph
# You can customize this by adding interrupt points for state updates
graph = builder.compile(
interrupt_before=[], # Add node names here to update state before they're called
interrupt_after=[], # Add node names here to update state after they're called
)
graph.name = "ReAct Agent" # This customizes the name in LangSmith