forked from kevinlawler/High-Frequency-Trading-Model-with-IB
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathRunHFTModel.py
694 lines (559 loc) · 23.7 KB
/
RunHFTModel.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
#######################################
# Author: James Ma
# Email stuff here: [email protected]
#######################################
import numpy as np
import pandas as pd
from ib.opt import ibConnection, message
from ib.opt import Connection
from datetime import datetime
import time
from time import strftime
import matplotlib.dates as dates
import ChartUtil
from StrategyParams import StrategyParams
from StockData import StockData
from ibUtil import *
conn = None
stocks_data = []
errs_data = []
ticks_data = []
strategy_params = StrategyParams()
bid_price, ask_price, last_price, ticker_id = 0, 0, 0, 0
MAXIMUM_TICKS_WINDOW = 60*5
MAXIMUM_ERRS_WINDOW_IN_TICKS = 100
EVALUATION_TIME_IN_SECONDS = 20
account_code = ""
order_id = 0
A_bid_price, A_ask_price = 0, 0
# This part is the 'secret-sauce' where actual trades takes place.
# My take is that great experience, good portfolio construction, and together with
# robust backtesting will make your strategy viable.
# GOOD PORTFOLIO CONTRUCTION CAN SAVE YOU FROM BAD RESEARCH,
# BUT BAD PORTFOLIO CONSTRUCTION CANNOT SAVE YOU FROM GREAT RESEARCH
# Note: These parameters are unrealistic at the moment.
def perform_trade_logic(fair_prices, std_A):
global strategy_params, stocks_data, conn, order_id, A_bid_price, A_ask_price
# Use stock A as point of trade
# In this example, use stock B as the opposite pair.
# Otherwise, in normal cases use 'cheaper' of the either opposite pairs.
stock_A_data = stocks_data[0]
stock_B_data = stocks_data[1]
position_A = stock_A_data.get_position()
lt_stdev = stock_A_data.get_long_term_std()
st_stdev = stock_A_data.get_short_term_std()
volatility_ratio = st_stdev / lt_stdev
is_A_overbought, is_A_oversold = get_is_overbought_or_oversold(fair_prices)
stock_B_fair_price = fair_prices[1]
stock_contract_A = stock_A_data.get_stock_contract()
stock_contract_B = stock_B_data.get_stock_contract()
# Output details to console.
print ticker_id,")"\
, "b/a:", A_bid_price, ",", A_ask_price\
, "std:", round(std_A, 4)\
, "stderrs:", strategy_params.get_last_stdevs()\
, "prices:", fair_prices\
, "vr:", round(volatility_ratio, 3)\
, "ovrbght/sld:", "T" if is_A_overbought else "F", "T" if is_A_oversold else "F"\
, "pos:", position_A
# TODOs:
# - Identify mean-reverting regime, trending regime and structural breaks
if position_A == 0:
if volatility_ratio < 1.0 and is_A_overbought:
# Short A Buy B
print "====================="
print "TRADE 1: SELL A BUY B"
print "====================="
qty = 100
order_sell_A = create_stock_order(qty, False)
order_buy_B = create_stock_order(qty, True)
conn.placeOrder(order_id, stock_contract_A, order_sell_A)
stock_A_data.on_send_order(-qty)
order_id += 1
conn.placeOrder(order_id, stock_contract_B, order_buy_B)
stock_B_data.on_send_order(qty)
order_id += 1
elif volatility_ratio > 1.5 and is_A_oversold:
print "====================="
print "TRADE 2: BUY A SELL B"
print "====================="
qty = 100
order_buy_A = create_stock_order(qty, True)
order_sell_B = create_stock_order(qty, False)
conn.placeOrder(order_id, stock_contract_A, order_buy_A)
stock_A_data.on_send_order(qty)
order_id += 1
conn.placeOrder(order_id, stock_contract_B, order_sell_B)
stock_B_data.on_send_order(-qty)
order_id += 1
elif position_A < 0:
# Cover short position in A - Take Profit
if volatility_ratio > 1.5 and is_A_oversold:
print "====================="
print "TRADE 3: BUY A SELL B"
print "====================="
qty = 100
order_buy_A = create_stock_order(qty, True)
order_sell_B = create_stock_order(qty, False)
conn.placeOrder(order_id, stock_contract_A, order_buy_A)
stock_A_data.on_send_order(qty)
order_id += 1
conn.placeOrder(order_id, stock_contract_B, order_sell_B)
stock_B_data.on_send_order(-qty)
order_id += 1
# Cover short position in A - Stop Loss
#if vr > 1.5 and is_A_oversold:
elif position_A > 0:
# Cover long position in A - Take Profit
if volatility_ratio < 1.0 and is_A_overbought:
print "====================="
print "TRADE 4: SELL A BUY B"
print "====================="
qty = 100
order_sell_A = create_stock_order(qty, False)
order_buy_B = create_stock_order(qty, True)
conn.placeOrder(order_id, stock_contract_A, order_sell_A)
stock_A_data.on_send_order(-qty)
order_id += 1
conn.placeOrder(order_id, stock_contract_B, order_buy_B)
stock_B_data.on_send_order(qty)
order_id += 1
def get_is_overbought_or_oversold(fair_prices):
stock_A_price = fair_prices[0]
is_A_oversold = True
is_A_overbought = True
for fair_price in fair_prices[1:]:
if fair_price > stock_A_price:
is_A_overbought = False
else:
is_A_oversold = False
return is_A_overbought, is_A_oversold
def on_tick():
global bid_price, ask_price, last_price, strategy_params, ticker_id
global A_bid_price, A_ask_price
precision = 5
beta = strategy_params.get_st_beta()
fair_prices = []
curr_stdevs = []
std = 0
# Get fair prices and standard deviation of errors
series_length = 0
for i, stockdata in enumerate(stocks_data):
price_series = stockdata.get_short_term_prices()
if price_series is None:
fair_prices.append(None)
else:
series_length = len(price_series)
most_recent_price = price_series[-1]
if i==0:
# The original first time series as point of comparison.
pd_series = pd.Series(price_series)
std = pd_series.pct_change().std()*100
fair_prices.append( round(most_recent_price, precision))
else:
fair_price = most_recent_price * beta
fair_prices.append( round(fair_price, precision))
original_series = stocks_data[0].get_short_term_prices()
if original_series is not None:
err_series = original_series - price_series * beta
pd_err_series = pd.Series(err_series)
curr_stdevs.append( round(pd_err_series.std(), precision) )
else:
curr_stdevs.append(None)
strategy_params.add_to_stdevs_series(curr_stdevs, series_length)
# Re-evaluate strategy params every EVALUATION_TIME_IN_SECONDS
if (strategy_params.is_evaluation_time_elapsed(EVALUATION_TIME_IN_SECONDS)
#and std > 0.095
#and std < 0.11
):
# TODO:
# - Store historical betas
# - Re-evaluate on regime shifts
# - Refine current method: To get new beta, use last price when A's standard deviations are at normal levels
print "=== Beta re-evaluated === "
st_means = []
for stock_data_object in stocks_data:
st_mean = stock_data_object.get_short_term_prices()[-1]
st_means.append(st_mean)
st_betas = [st_means[0]/price for price in st_means]
strategy_params.set_st_betas(st_betas)
strategy_params.set_new_evaluation_time()
if A_bid_price != 0 and A_ask_price != 0:
perform_trade_logic(fair_prices, std)
def process_historical_data(msg):
print msg
vwap = msg.WAP
stock_index = msg.reqId
if vwap != -1:
date_time = msg.date
#open = msg.open
#high = msg.high
close = msg.close
#volume = msg.volume
stocks_data[stock_index].add_historical_data_point(close, date_time)
elif vwap == -1:
stocks_data[stock_index].set_finished_storing()
def process_portfolio_updates(msg):
contract = msg.contract
position = msg.position
market_price = msg.marketPrice
market_value = msg.marketValue
average_cost = msg.averageCost
unrealized_pnl = msg.unrealizedPNL
realized_pnl = msg.realizedPNL
account_name = msg.accountName
global stocks_data
for stock_data in stocks_data:
if stock_data.get_stock_contract() == contract:
stocks_data.update_position(position, market_price, market_value
, average_cost, unrealized_pnl, realized_pnl
, account_name)
def logger(msg):
if msg.typeName == DataType.MSG_TYPE_HISTORICAL_DATA:
process_historical_data(msg)
elif msg.typeName == DataType.MSG_TYPE_UPDATE_PORTFOLIO:
process_portfolio_updates(msg)
elif msg.typeName == DataType.MSG_TYPE_MANAGED_ACCOUNTS:
global account_code
account_code = msg.accountsList
elif msg.typeName == DataType.MSG_TYPE_NEXT_ORDER_ID:
global order_id
order_id = msg.orderId
else:
print "logger: " , msg
def tick_string_event(msg):
this_ticker_id = msg.tickerId
if msg.tickType == DataType.FIELD_LAST_TIMESTAMP:
print this_ticker_id, ": ", "ts: ", msg.value
else:
print "notickstring: ", msg
def tick_generic(msg):
print "gen: ", msg
def append_tick_data_to_series(date_obj, price, tick_series):
dtnum = dates.date2num(date_obj)
new_tick = np.array([dtnum, price])
is_replacement = False
if tick_series is None:
tick_series = np.array([new_tick])
else:
last_dtnum = tick_series[-1][0]
dt2 = dates.num2date(last_dtnum)
# Replace with latest price if within same second.
if (date_obj.replace(tzinfo=None) - dt2.replace(tzinfo=None)).seconds == 0 and date_obj.second == dt2.second:
is_replacement = True
tick_series[-1,1] = price
else:
tick_series = np.vstack([tick_series, new_tick])
return tick_series, is_replacement
# Use previous tick interpolation in creating homogeneous time series
def extend_ticks_on_other_series(stock_index, date_obj):
global stocks_data
for i, stock_data in enumerate(stocks_data):
chart_ds = stock_data.get_historical_short_term_chart_data_set()
tick_series = chart_ds.get_ticks()
if i != stock_index:
previous_price = chart_ds.get_most_recent_price()
tick_series, is_replacement = append_tick_data_to_series(date_obj, previous_price, tick_series)
chart_ds.set_ticks(tick_series)
if tick_series is not None and len(tick_series) > MAXIMUM_TICKS_WINDOW:
tick_series = tick_series[-MAXIMUM_TICKS_WINDOW:]
chart_ds.set_ticks(tick_series)
def get_tick_series_at_index(stock_index):
global stocks_data
stock_data = stocks_data[stock_index]
if stock_data.get_is_bootstrap_completed():
# Use real-time data
chart_ds = stock_data.get_historical_short_term_chart_data_set()
tick_series = chart_ds.get_ticks()
return tick_series
else:
# Use historical data
global ticks_data
tick_series = ticks_data[stock_index]
return tick_series
def append_tick_data(stock_index, date_obj, price):
global stocks_data
tick_series = get_tick_series_at_index(stock_index)
tick_series, is_replacement = append_tick_data_to_series(date_obj, price, tick_series)
stock_data = stocks_data[stock_index]
if stock_data.get_is_bootstrap_completed():
# Use real-time data
chart_ds = stock_data.get_historical_short_term_chart_data_set()
chart_ds.set_ticks(tick_series)
if not is_replacement:
extend_ticks_on_other_series(stock_index, date_obj)
else:
# Use historical data
ticks_data[stock_index] = tick_series
def tick_event(msg):
global ticks_data, bid_price, ask_price, last_price, ticker_id, strategy_params
global A_ask_price, A_bid_price
ticker_id = msg.tickerId
if msg.typeName == DataType.MSG_TYPE_TICK_STRING:
if msg.tickType == DataType.FIELD_LAST_TIMESTAMP:
print ticker_id, ": ", " ts: ", msg.value
return
if msg.field == DataType.FIELD_BID_PRICE:
#print ticker_id, ": ", "bid: ", msg.price
bid_price = msg.price
if ticker_id == 0:
A_bid_price = bid_price
elif msg.field == DataType.FIELD_ASK_PRICE:
#print ticker_id, ": ", "ask: ", msg.price
ask_price= msg.price
if ticker_id == 0:
A_ask_price = ask_price
#elif msg.field == DataType.FIELD_BID_SIZE:
# print ticker_id, ": ", "bidvol: ", msg.size
#elif msg.field == DataType.FIELD_ASK_SIZE:
# print ticker_id, ": ", "askvol: ", msg.size
elif msg.field == DataType.FIELD_LAST_PRICE:
#print ticker_id, ": ", "last: ", msg.price, "at", datetime.now()
last_price= msg.price
append_tick_data(ticker_id, datetime.now(), msg.price)
if strategy_params.is_bootstrap_completed():
on_tick()
#elif msg.field == DataType.FIELD_LAST_SIZE:
# print ticker_id, ": ", "lastvol: ", msg.size
#elif msg.field == DataType.FIELD_HIGH:
# print ticker_id, ": ", "h: ", msg.price
#elif msg.field == DataType.FIELD_LOW:
# print ticker_id, ": ", "l: ", msg.price
#elif msg.field == DataType.FIELD_VOLUME:
# print ticker_id, ": ", "vol: ", msg.size
#elif msg.field == DataType.FIELD_CLOSE_PRICE:
# print ticker_id, ": ", "close: ", msg.price
#else:
# print "nomsg: ", msg
# # Throw away data to keep the desired time window region
# while lastime - xdata[0] > dates.minutes(minutes_in_window):
# del xdata[0]
# del askdata[0]
# del biddata[0]
def plot_stocks(strategy_parameters):
global stocks_data
ys = []
for stock_index, stock_data_object in enumerate(stocks_data):
chart_data_set = stock_data_object.get_historical_short_term_chart_data_set()
beta = strategy_params.get_st_beta_at_index(stock_index)
prices = np.array(chart_data_set.get_prices())
impv_prices = prices * beta
ys.append(impv_prices)
x = chart_data_set.get_dates()
stdevs = strategy_parameters.get_stdevs_series()
ChartUtil.setup_plots(x, ys, stdevs)
def update_charts():
global stocks_data, strategy_params, A_ask_price, A_bid_price
ys = []
for stock_index, stock_data in enumerate(stocks_data):
st_chart_ds = stock_data.get_historical_short_term_chart_data_set()
beta = strategy_params.get_st_beta_at_index(stock_index)
prices = st_chart_ds.get_prices()*beta
ys.append(prices)
ys2 = strategy_params.get_stdevs_series()
ChartUtil.update_plot(ys, ys2, A_bid_price, A_ask_price)
def request_historical_data(ibconn, stock_index, stock_contract, duration, bar_size):
ibconn.reqHistoricalData(stock_index
, stock_contract
, strftime(DataType.DATE_TIME_FORMAT)
, duration
, bar_size
, DataType.WHAT_TO_SHOW_TRADES
, DataType.RTH_ALL
, DataType.DATEFORMAT_STRING)
time.sleep(1)
def setup_stocks_data(stocks):
global ticks_data, stocks_data, errs_data
for stock in stocks:
stock_contract = create_stock_contract(stock)
stock_data = StockData(stock_contract)
stocks_data.append(stock_data)
ticks_data.append(None)
errs_data.append(None)
ticks_data = np.array(ticks_data)
errs_data = np.array(errs_data)
def boot_strap_long_term(conn):
for stock_index, stock_data_object in enumerate(stocks_data):
stock_data_object.set_is_storing_long_term()
stock_contract = stock_data_object.get_stock_contract()
request_historical_data(conn, stock_index, stock_contract
, DataType.DURATION_1_DAY, DataType.BAR_SIZE_1_MIN)
def boot_strap_short_term(conn):
for stock_index, stock_data in enumerate(stocks_data):
stock_contract = stock_data.get_stock_contract()
stock_data.set_is_storing_short_term()
request_historical_data(conn, stock_index, stock_contract
, DataType.DURATION_1_MIN, DataType.BAR_SIZE_1_SEC)
def calculate_params(stocks_data_arr):
lt_means, st_means = [], []
lt_log_returns, st_log_returns = [], []
for stock_data_object in stocks_data_arr:
lt_mean = stock_data_object.get_long_term_mean()
st_mean = stock_data_object.get_short_term_mean()
lt_means.append(lt_mean)
st_means.append(st_mean)
lt_prices = stock_data_object.get_long_term_prices()
st_prices = stock_data_object.get_short_term_prices()
lt_log_return_series = np.log([price/prev_price for price, prev_price in zip(lt_prices, lt_prices[1:])])
st_log_return_series = np.log([price/prev_price for price, prev_price in zip(st_prices, st_prices[1:])])
lt_log_returns.append(lt_log_return_series)
st_log_returns.append(st_log_return_series)
lt_betas = [lt_means[0]/price for price in lt_means]
st_betas = [st_means[0]/price for price in st_means]
# Correlations
lt_corrs = []
base_lt_log_return = lt_log_returns[0]
for lt_log_return in lt_log_returns[1:]:
correlation_matrix = np.corrcoef(base_lt_log_return, lt_log_return)
corr = correlation_matrix[1][0]
corr_rounded = round(corr * 100, 3)
lt_corrs.append(corr_rounded)
st_corrs = []
base_st_log_return = st_log_returns[0]
for st_log_return in st_log_returns[1:]:
correlation_matrix = np.corrcoef(base_st_log_return, st_log_return)
corr = correlation_matrix[1][0]
corr_rounded = round(corr * 100, 3)
st_corrs.append(corr_rounded)
strategy_params.set_betas(st_betas, lt_betas)
strategy_params.set_corrs(st_corrs, lt_corrs)
def register_data_handlers():
global conn
conn.registerAll(logger)
conn.unregister(logger
, message.tickSize
, message.tickPrice
, message.tickString
, message.tickGeneric
, message.tickOptionComputation)
#conn.register(tick_string_event, message.tickString)
conn.register(tick_event, message.tickPrice, message.tickSize)
#conn.register(tick_generic, message.tickGeneric)
def request_streaming_data(conn):
for stock_index, stock_data_object in enumerate(stocks_data):
stock_contract = stock_data_object.get_stock_contract()
conn.reqMktData(stock_index
, stock_contract
, DataType.GENERIC_TICKS_NONE
, DataType.SNAPSHOT_NONE)
time.sleep(1)
conn.reqAccountUpdates(True, account_code)
def wait_for_boot_strap_lt_to_complete():
is_waiting = True
while is_waiting:
is_waiting = False
for stock_data in stocks_data:
is_stock_waiting = stock_data.is_waiting_for_storing()
if is_stock_waiting:
is_waiting = True
if is_waiting:
time.sleep(1)
def wait_for_boot_strap_st_to_complete():
is_waiting = True
while is_waiting:
is_waiting = False
for stock_data in stocks_data:
is_stock_waiting = stock_data.is_waiting_for_storing()
if is_stock_waiting:
is_waiting = True
if is_waiting:
time.sleep(1)
def print_elapsed_time(start_time):
elapsed_time = time.time() - start_time
print "Completed in %.3f seconds." % elapsed_time
def truncate_tick_series(tick_series, min_length):
return tick_series[-min_length:]
def truncate_short_term_ticks_to_length(stocks_data_arr, min_length):
for i, stock_data in enumerate(stocks_data_arr):
chart_ds = stock_data.get_historical_short_term_chart_data_set()
tick_series = chart_ds.get_ticks()
tick_series = truncate_tick_series(tick_series, min_length)
chart_ds.set_ticks(tick_series)
return stocks_data_arr
def bridge_historical_and_present_ticks(stocks_data_arr, ticks_data, end_time_obj):
min_length = 0
for stock_index, stock_data in enumerate(stocks_data_arr):
chart_ds = stock_data.get_historical_short_term_chart_data_set()
ticks_series = ticks_data[stock_index]
most_recent_price = chart_ds.get_most_recent_price()
most_recent_date = chart_ds.get_most_recent_dt()
most_recent_dt = dates.num2date(most_recent_date).replace(tzinfo=None)
seconds_left = (end_time_obj - most_recent_dt).seconds
stock_data.set_is_storing_short_term()
for i in range(1, seconds_left+1):
tick_date = most_recent_date + dates.seconds(i)
next_tick_date = most_recent_date + dates.seconds(i+1)
# Find price of tick series with same second
if ticks_series is not None:
recent_ticks_data = ticks_series[ticks_series[:,0] >= tick_date]
if len(recent_ticks_data) != 0:
recent_ticks_data = recent_ticks_data[recent_ticks_data[:,0] < next_tick_date]
if len(recent_ticks_data) != 0:
most_recent_price = recent_ticks_data[0][1]
# Store price as stick
new_tick = np.array([tick_date, most_recent_price])
chart_ds.add_tick_with_datetime_tick(new_tick)
stock_data.set_finished_storing()
ticks_data[stock_index] = None
stock_data.set_bootstrap_is_completed()
length = len(chart_ds.get_ticks())
if min_length==0 or length < min_length:
min_length = length
truncate_short_term_ticks_to_length(stocks_data_arr, min_length)
# For debugging tick data
def print_shapes():
global stocks_data
print "============"
for i, stock_data in enumerate(stocks_data):
chart_ds = stock_data.get_historical_short_term_chart_data_set()
price_series = chart_ds.get_ticks()
print np.shape(price_series)
print "------------"
def cancel_market_data_request():
global stocks_data, conn
for stock_index, stock_data in enumerate(stocks_data):
conn.cancelMktData(stock_index)
time.sleep(1)
def main():
global conn
print "HFT model started."
# Use ibConnection() for TWS, or create connection for API Gateway
#conn = ibConnection()
conn = Connection.create(port=4001, clientId=101)
register_data_handlers()
conn.connect()
# Input your stocks of interest
stocks = ("C", "MS")
setup_stocks_data(stocks)
request_streaming_data(conn)
print "Boot strapping..."
start_time = time.time()
boot_strap_long_term(conn)
wait_for_boot_strap_lt_to_complete()
boot_strap_short_term(conn)
wait_for_boot_strap_st_to_complete()
print_elapsed_time(start_time)
strategy_params.set_bootstrap_completed()
print "Calculating strategy parameters..."
start_time = time.time()
calculate_params(stocks_data)
print_elapsed_time(start_time)
print "Bridging historical data..."
start_time = time.time()
bridge_historical_and_present_ticks(stocks_data, ticks_data, datetime.now())
print_elapsed_time(start_time)
print "Trading started."
try:
plot_stocks(strategy_params)
while True:
update_charts()
time.sleep(1)
except Exception, e:
print "Cancelling...",
cancel_market_data_request()
print "Disconnecting..."
conn.disconnect()
time.sleep(1)
print "Disconnected."
if __name__ == '__main__':
main()