forked from kevinlawler/High-Frequency-Trading-Model-with-IB
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathhftunittests.py
342 lines (277 loc) · 14.6 KB
/
hftunittests.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
#######################################
# Author: James Ma
# Email stuff here: [email protected]
#######################################
import unittest
import RunHFTModel
from datetime import datetime
import numpy as np
import matplotlib.dates as dates
import StrategyParams as strategyparams
from StockData import StockData
from ibUtil import *
class TestStockData(unittest.TestCase):
stock = "C"
price_1 = 15.5
dt_1 = "20140511 19:15:24"
price_2 = 16.0
dt_2 = "20140511 19:15:25"
def setUp(self):
self.test_contract = create_stock_contract(self.stock)
def check_array( self, expected, result, digits=3):
if hasattr(expected,'__iter__'):
if type(expected)==dict:
for (key,expectedElem) in expected.iteritems():
resElem = result[key]
self.check_array(expectedElem, resElem, digits )
else:
for (i, expectedElem) in enumerate(expected):
resElem = result[i]
self.check_array(expectedElem, resElem, digits )
else:
if type(expected) is str:
self.assertEqual(expected, result)
else:
self.assertAlmostEqual(expected, result, digits)
def testAdd1HistoricalData(self):
test_stock_data = StockData(self.test_contract)
test_stock_data.set_is_storing_long_term()
test_stock_data.add_historical_data_point(self.price_1, self.dt_1)
test_chart_data_set = test_stock_data.get_historical_chart_data_set()
result_prices = test_chart_data_set.get_prices()
expected_prices = [self.price_1]
self.assertEqual(result_prices, expected_prices)
def testAdd2HistoricalData(self):
test_stock_data = StockData(self.test_contract)
test_stock_data.set_is_storing_long_term()
test_stock_data.add_historical_data_point(self.price_1, self.dt_1)
test_stock_data.add_historical_data_point(self.price_2, self.dt_2)
test_chart_data_set = test_stock_data.get_historical_chart_data_set()
result_prices = test_chart_data_set.get_prices()
expected_prices = np.array([self.price_1, self.price_2])
self.check_array(expected_prices, result_prices)
def testCalculateParamsSTAndLTBetasOn2Stocks(self):
stocks_data = []
test_stock_data1 = StockData(create_stock_contract(self.stock))
test_stock_data1.set_is_storing_long_term()
test_stock_data1.add_historical_data_point(50, self.dt_1)
test_stock_data1.add_historical_data_point(60, self.dt_2)
test_stock_data1.set_finished_storing()
test_stock_data1.set_is_storing_short_term()
test_stock_data1.add_historical_data_point(20, self.dt_1)
test_stock_data1.add_historical_data_point(30, self.dt_2)
stocks_data.append(test_stock_data1)
test_stock_data2 = StockData(self.test_contract)
test_stock_data2.set_is_storing_long_term()
test_stock_data2.add_historical_data_point(10, self.dt_1)
test_stock_data2.add_historical_data_point(12, self.dt_2)
test_stock_data2.set_finished_storing()
test_stock_data2.set_is_storing_short_term()
test_stock_data2.add_historical_data_point(40, self.dt_1)
test_stock_data2.add_historical_data_point(60, self.dt_2)
stocks_data.append(test_stock_data2)
RunHFTModel.calculate_params(stocks_data)
def createSimpleChartDataSetWith2TimePoints(self):
test_stock_data1 = StockData(create_stock_contract(self.stock))
test_stock_data1.set_is_storing_long_term()
test_stock_data1.add_historical_data_point(50, "20140511 19:15:24")
test_stock_data1.add_historical_data_point(60, "20140511 19:15:25")
test_stock_data1.set_finished_storing()
return test_stock_data1
def testMostRecentTickDateTime(self):
test_stock_data1 = self.createSimpleChartDataSetWith2TimePoints()
chart_ds = test_stock_data1.get_historical_chart_data_set()
result_dt = chart_ds.get_most_recent_dt()
expected_dt = 735364.8023726852
self.assertEqual(result_dt, expected_dt)
def testGet5SecondsLaterTimeSinceMostRecentTickDateTime(self):
test_stock_data1 = self.createSimpleChartDataSetWith2TimePoints()
chart_ds = test_stock_data1.get_historical_chart_data_set()
current_time_str = "20140511 19:15:30"
elapsed_time = chart_ds.get_seconds_elapsed_since_time(current_time_str)
expected_result = 5
self.assertEqual(expected_result, elapsed_time)
def testGet5SecondsLaterIBTimeString(self):
test_stock_data1 = self.createSimpleChartDataSetWith2TimePoints()
chart_ds = test_stock_data1.get_historical_chart_data_set()
current_time_str = "20140511 19:15:30"
ib_string = chart_ds.get_seconds_elapsed_since_time_as_ib_string(current_time_str)
expected_result = "5 S"
self.assertEqual(expected_result, ib_string)
def testTicksDataWith3Stocks(self):
ticks_data = [None, None, None]
dt1 = datetime.strptime("2014-05-11 19:15:23", DataType.DATE_TIME_FORMAT_LONG)
dt2 = datetime.strptime("2014-05-11 19:15:24", DataType.DATE_TIME_FORMAT_LONG)
tick_series = ticks_data[1]
tick_series, is_replacement = RunHFTModel.append_tick_data_to_series(dt1, 20, tick_series)
tick_series, is_replacement = RunHFTModel.append_tick_data_to_series(dt2, 21, tick_series)
ticks_data[1] = tick_series
expected = [None, np.array([[ 7.35364802e+05, 20],
[ 7.35364802e+05, 21]]), None]
self.check_array(expected, ticks_data, 3)
def testTicksDataWith3StocksInSameSeconds(self):
ticks_data = [None, None, None]
dt1 = datetime.strptime("2014-05-11 19:15:23.009", DataType.DATE_TIME_FORMAT_LONG_MILLISECS)
dt2 = datetime.strptime("2014-05-11 19:15:23.010", DataType.DATE_TIME_FORMAT_LONG_MILLISECS)
tick_series = ticks_data[1]
tick_series, is_replacement = RunHFTModel.append_tick_data_to_series(dt1, 20, tick_series)
tick_series, is_replacement = RunHFTModel.append_tick_data_to_series(dt2, 21, tick_series)
ticks_data[1] = tick_series
expected = [None, np.array([[ 7.35364802e+05, 21]]), None]
self.check_array(expected, ticks_data, 3)
def testTicksDataWith3StocksInDifferentSeconds(self):
ticks_data = []
ticks_data.append(None)
ticks_data.append(None)
ticks_data.append(None)
dt1 = datetime.strptime("2014-05-11 19:15:23.059", DataType.DATE_TIME_FORMAT_LONG_MILLISECS)
dt2 = datetime.strptime("2014-05-11 19:15:24.010", DataType.DATE_TIME_FORMAT_LONG_MILLISECS)
tick_series = ticks_data[1]
tick_series, is_replacement = RunHFTModel.append_tick_data_to_series(dt1, 20, tick_series)
tick_series, is_replacement = RunHFTModel.append_tick_data_to_series(dt2, 21, tick_series)
ticks_data[1] = tick_series
expected = [None, np.array([[735364.80235, 20], [735364.802361, 21]]), None]
self.check_array(expected, ticks_data, 3)
def testBridgeBootstrap(self):
# Store historical ticks
test_stock_data1 = StockData(create_stock_contract(self.stock))
test_stock_data1.set_is_storing_short_term()
test_stock_data1.add_historical_data_point(50, "20140511 19:15:24")
test_stock_data1.add_historical_data_point(60, "20140511 19:15:25")
test_stock_data1.set_finished_storing()
stocks_data = [test_stock_data1]
# Store incoming ticks
p1 = 20
p2 = 21
p3 = 22
p4 = 23
p5 = 24
dt1 = datetime.strptime("2014-05-11 19:15:23", DataType.DATE_TIME_FORMAT_LONG)
dt2 = datetime.strptime("2014-05-11 19:15:24", DataType.DATE_TIME_FORMAT_LONG)
dt3 = datetime.strptime("2014-05-11 19:15:25", DataType.DATE_TIME_FORMAT_LONG)
dt4 = datetime.strptime("2014-05-11 19:15:26", DataType.DATE_TIME_FORMAT_LONG)
dt5 = datetime.strptime("2014-05-11 19:15:27", DataType.DATE_TIME_FORMAT_LONG)
tick_1 = np.array([dates.date2num(dt1), p1])
tick_2 = np.array([dates.date2num(dt2), p2])
tick_3 = np.array([dates.date2num(dt3), p3])
tick_4 = np.array([dates.date2num(dt4), p4])
tick_5 = np.array([dates.date2num(dt5), p5])
# Create test ticks data.
tick_series = np.array(tick_1)
tick_series = np.vstack([tick_series, tick_2])
tick_series = np.vstack([tick_series, tick_3])
tick_series = np.vstack([tick_series, tick_4])
tick_series = np.vstack([tick_series, tick_5])
ticks_data = [tick_series]
# Bridge ticks and retrieve results
end_time = datetime.strptime("2014-05-11 19:15:35", DataType.DATE_TIME_FORMAT_LONG)
RunHFTModel.bridge_historical_and_present_ticks(stocks_data, ticks_data, end_time)
chart_ds = stocks_data[0].get_historical_short_term_chart_data_set()
# Test for prices
result_prices = chart_ds.get_prices()
expected_prices = [50, 60, 23, 24,
24, 24, 24, 24,
24, 24, 24, 24]
self.check_array(expected_prices, result_prices)
# Test date labels
expected_datelabels = ['20140511 19:15:24'
, '20140511 19:15:25'
, '20140511 19:15:26'
, '20140511 19:15:27'
, '20140511 19:15:28'
, '20140511 19:15:29'
, '20140511 19:15:30'
, '20140511 19:15:31'
, '20140511 19:15:32'
, '20140511 19:15:33'
, '20140511 19:15:34'
, '20140511 19:15:35'
]
result_datelabels = chart_ds.get_dates_labels()
self.check_array(expected_datelabels, result_datelabels)
def testStandardDeviationOnHistoricalShortTermData(self):
test_stock_data1 = StockData(create_stock_contract(self.stock))
test_stock_data1.set_is_storing_short_term()
test_stock_data1.add_historical_data_point(50, "20140511 19:15:24")
test_stock_data1.add_historical_data_point(60, "20140511 19:15:25")
test_stock_data1.add_historical_data_point(70, "20140511 19:15:26")
test_stock_data1.add_historical_data_point(80, "20140511 19:15:27")
test_stock_data1.add_historical_data_point(90, "20140511 19:15:28")
test_stock_data1.add_historical_data_point(110, "20140511 19:15:29")
test_stock_data1.set_finished_storing()
stdev = test_stock_data1.get_short_term_std()
expected = 0.039971566 * 100
self.assertAlmostEqual(expected, stdev, 5)
def testTruncateTickSeries(self):
test_stock_data1 = StockData(create_stock_contract(self.stock))
test_stock_data1.set_is_storing_short_term()
test_stock_data1.add_historical_data_point(50, "20140511 19:15:24")
test_stock_data1.add_historical_data_point(60, "20140511 19:15:25")
test_stock_data1.add_historical_data_point(70, "20140511 19:15:26")
test_stock_data1.add_historical_data_point(80, "20140511 19:15:27")
test_stock_data1.add_historical_data_point(90, "20140511 19:15:28")
test_stock_data1.add_historical_data_point(100, "20140511 19:15:29")
test_stock_data1.set_finished_storing()
length = 5
chart_ds = test_stock_data1.get_historical_short_term_chart_data_set()
tick_series = chart_ds.get_prices()
new_tick_series = RunHFTModel.truncate_tick_series(tick_series, length)
expected = [60, 70, 80, 90, 100]
self.check_array(expected, new_tick_series)
def testAddStdevToStrategy(self):
strategy_params = strategyparams.StrategyParams()
strategy_params.add_to_stdevs_series([1, 10], 1)
strategy_params.add_to_stdevs_series([2, 20], 2)
strategy_params.add_to_stdevs_series([3, 30], 3)
strategy_params.add_to_stdevs_series([4, 40], 4)
strategy_params.add_to_stdevs_series([5, 50], 5)
strategy_params.add_to_stdevs_series([6, 60], 6)
expected_series_1 = np.array([1, 2, 3, 4, 5, 6])
expected_series_2 = np.array([10, 20, 30, 40, 50, 60])
expected = [expected_series_1, expected_series_2]
result = strategy_params.get_stdevs_series()
self.check_array(expected, result)
#strategy_params.trim_stdevs_series_to_length(3)
#expected_series_1 = np.array([4, 5, 6])
#expected_series_2 = np.array([40, 50, 60])
#expected = [expected_series_1, expected_series_2]
#result = strategy_params.get_stdevs_series()
def testAddStdevToStrategyWithPadding(self):
strategy_params2 = strategyparams.StrategyParams()
strategy_params2.add_to_stdevs_series([4, 40], 4)
strategy_params2.add_to_stdevs_series([5, 50], 5)
strategy_params2.add_to_stdevs_series([6, 60], 6)
expected_series_1 = np.array([0, 0, 0, 4, 5, 6])
expected_series_2 = np.array([0, 0, 0, 40, 50, 60])
expected = [expected_series_1, expected_series_2]
result = strategy_params2.get_stdevs_series()
self.check_array(expected, result)
def testAddStdevToStrategyWithPaddingAndReplacement(self):
strategy_params2 = strategyparams.StrategyParams()
strategy_params2.add_to_stdevs_series([4, 40], 4)
strategy_params2.add_to_stdevs_series([5, 50], 5)
strategy_params2.add_to_stdevs_series([6, 60], 6)
strategy_params2.add_to_stdevs_series([7, 70], 6)
expected_series_1 = np.array([0, 0, 0, 4, 5, 7])
expected_series_2 = np.array([0, 0, 0, 40, 50, 70])
expected = [expected_series_1, expected_series_2]
result = strategy_params2.get_stdevs_series()
self.check_array(expected, result)
def testAIsNeitherOverboughtOrOversold(self):
fairPrices = [50, 60 ,30]
result = RunHFTModel.get_is_overbought_or_oversold(fairPrices)
expected = False, False
self.assertEqual(expected, result)
def testAIsOverSold(self):
fairPrices = [50, 60 ,70]
result = RunHFTModel.get_is_overbought_or_oversold(fairPrices)
expected = False, True
self.assertEqual(expected, result)
def testAIsOverBought(self):
fairPrices = [50, 40 ,30]
result = RunHFTModel.get_is_overbought_or_oversold(fairPrices)
expected = True, False
self.assertEqual(expected, result)
if __name__ == '__main__':
unittest.main()
print "Unit Test Main"