forked from wwang2/Coarse-Graining-Auto-encoders
-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathcgae.py
64 lines (54 loc) · 2.19 KB
/
cgae.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
import torch
import torch.nn.functional as F
from torch import nn, optim
from torch.nn import functional as F
from torch.nn import Parameter
import numpy
def temp_scheduler(max_epoch, device, decay_portion=0.4, tmin=0.2):
decay_epoch = int(max_epoch * 0.4)
t0 = 3.0
tmin = 0.2
temp = np.linspace(0, max_epoch, max_epoch )
t_sched = t0 * np.exp(-temp/decay_epoch ) + tmin
return torch.Tensor(t_sched).to(device)
def sample_gumbel(shape, device='cpu', eps=1e-20):
U = torch.rand(shape).to(device)
return -torch.log(-torch.log(U + eps) + eps)
def gumbel_softmax_sample(logits, temperature, device='cpu'):
y = logits + sample_gumbel(logits.size(), device)
return F.softmax(y / temperature, dim=-1)
def gumbel_softmax(logits, temperature, device, hard=False):
y = gumbel_softmax_sample(logits, temperature, device)
if hard:
shape = y.size()
y_hard = torch.FloatTensor(shape).zero_()
CG = y#.t()
#print(y.shape)
y_hard = y_hard.scatter_(1, CG.argmax(1)[:, None], 1.0)
y = (y_hard - y).detach() + y
return y
class encoder(torch.nn.Module):
def __init__(self, in_dim, out_dim, hard=False, device='cpu'):
super(encoder, self).__init__()
self.out_dim = out_dim
self.in_dim = in_dim
self.hard = hard
self.reset_parameters()
self.device = device
def reset_parameters(self):
self.weight1 = Parameter(torch.rand(self.out_dim, self.in_dim))
def forward(self, xyz, temp):
CG = gumbel_softmax(self.weight1.t(), temp, hard=self.hard, device=self.device).t()
self.CG = CG/CG.sum(1).unsqueeze(1)
return torch.matmul(self.CG.expand(xyz.shape[0], self.out_dim, self.in_dim), xyz)
class decoder(torch.nn.Module):
def __init__(self, in_dim, out_dim):
super(decoder, self).__init__()
self.out_dim = out_dim
self.in_dim = in_dim
self.reset_parameters()
def reset_parameters(self):
self.weight = Parameter(torch.rand(self.out_dim, self.in_dim))
def forward(self, xyz):
weight = self.weight
return torch.matmul(weight.expand(xyz.shape[0], self.out_dim, self.in_dim), xyz)