-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathutils.py
155 lines (120 loc) · 4.44 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
import tensorflow as tf
import numpy as np
import matplotlib.pyplot as plt
import io
from io import BytesIO
from typing import *
import dataclasses
import json
import argparse
from collections import defaultdict
from simple_parsing import ParseableFromCommandLine
def create_result_subdir(result_dir: str, run_name: str) -> str:
import glob
from itertools import count
import os
paths = glob.glob(os.path.join(result_dir, f"*-{run_name}"))
run_ids = map(lambda p: int(os.path.basename(p).split("-")[0]), paths)
run_id = max(run_ids, default=0) + 1
path = os.path.join(result_dir, f"{run_id:02d}-{run_name}")
print(f"Creating result subdir at '{path}'")
os.makedirs(path)
return path
def run_id(path_string):
return int(path_string.split("/")[-2].split("-")[0])
def epoch(path_string):
return int(path_string.split("/")[-1].split("_")[1].split(".")[0])
def locate_model_file(result_dir: str, run_name: str, suffix="hdf5") -> str:
import glob
import os
paths = glob.glob(os.path.join(result_dir, f"*-{run_name}/model_*.{suffix}"))
if not paths:
raise FileNotFoundError
paths = sorted(paths, key=run_id, reverse=True)
latest_run_id = run_id(paths[0])
paths = list(filter(lambda p: run_id(p) == latest_run_id, paths))
paths = sorted(paths, key=epoch, reverse=True)
return paths[0]
@tf.function
def normalize_images(images):
return (images + 1) / 2
def plot_to_image(figure):
"""Converts the matplotlib plot specified by 'figure' to a PNG image and
returns it. The supplied figure is closed and inaccessible after this call."""
# Save the plot to a PNG in memory.
buf = io.BytesIO()
plt.savefig(buf, format='png')
# Closing the figure prevents it from being displayed directly inside
# the notebook.
plt.close(figure)
buf.seek(0)
# Convert PNG buffer to TF image
image = tf.image.decode_png(buf.getvalue(), channels=4)
# Add the batch dimension
image = tf.expand_dims(image, 0)
return image
def samples_grid(samples):
"""Return a grid of the samples images as a matplotlib figure."""
# Create a figure to contain the plot.
figure = plt.figure()
for i in range(64):
# Start next subplot.
plt.subplot(8, 8, i + 1)
plt.xticks([])
plt.yticks([])
plt.grid(False)
x = samples[i]
if x.shape[-1] == 1:
x = np.reshape(x, [*x.shape[:-1]])
plt.imshow(x)
plt.tight_layout(pad=0)
return figure
def NHWC_to_NCHW(image: tf.Tensor) -> tf.Tensor:
return tf.transpose(image, [0, 3, 1, 2])
def NCHW_to_NHWC(image: tf.Tensor) -> tf.Tensor:
return tf.transpose(image, [0, 2, 3, 1])
def to_dataset(t: Union[tf.Tensor, np.ndarray, tf.data.Dataset]) -> tf.data.Dataset:
if isinstance(t, tf.data.Dataset):
return t
t = tf.convert_to_tensor(t)
return tf.data.Dataset.from_tensor_slices(t)
def read_json(file_path: str) -> Dict:
with open(file_path, 'r') as f:
return json.load(f)
from tensorflow.python.framework.ops import EagerTensor
from dataclasses import dataclass
from tensorflow.python.training.tracking.tracking import AutoTrackable
class JsonSerializable():
def asdict(self):
d = dataclasses.asdict(self)
d_without_tf_objects = {}
for k, v in d.items():
if isinstance(v, (tf.Variable, tf.Tensor, EagerTensor)):
d_without_tf_objects[k] = float(v.numpy())
else:
d_without_tf_objects[k] = v
return d_without_tf_objects
def save_json(self, file_path: str) -> None:
with open(file_path, 'w') as f:
d = self.asdict()
json.dump(d, f, indent=1)
@classmethod
def from_json(cls, file_path: str):
d = read_json(file_path)
return cls(**d) #type: ignore
@dataclass
class HyperParams(AutoTrackable, JsonSerializable):
"""
Simple wrapper for a python dataclass which enables saving and restoring from Tensorflow checkpoints.
Values are tracked using the `AutoTrackable` tensorflow class.
Note: under the hood, this makes a tf.constant out of each of the values of the dataclass.
"""
def __setattr__(self, key, value):
v = value
if isinstance(value, (int, float)):
v = tf.constant(value)
super().__setattr__(key, v)
def __repr__(self):
return self.asdict().__repr__()
def __str__(self):
return str(self.asdict())