-
Notifications
You must be signed in to change notification settings - Fork 55
/
Copy pathmain.py
164 lines (127 loc) · 6.08 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
# -*- coding: utf_8 -*-
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import argparse
import torch
import torch.nn as nn
import torch.optim as optim
from data_loader import train_data_loader, test_data_loader
# Load initial models
from networks import EmbeddingNetwork
# Load batch sampler and train loss
from datasets import BalancedBatchSampler
from losses import BlendedLoss, MAIN_LOSS_CHOICES
from trainer import fit
from inference import retrieve
def load(file_path):
model.load_state_dict(torch.load(file_path))
print('model loaded!')
return model
def infer(model, queries, db):
retrieval_results = retrieve(model, queries, db, input_size, infer_batch_size)
return list(zip(range(len(retrieval_results)), retrieval_results.items()))
def get_arguments():
args = argparse.ArgumentParser()
args.add_argument('--dataset-path', type=str)
args.add_argument('--model-save-dir', type=str)
args.add_argument('--model-to-test', type=str)
# Hyperparameters
args.add_argument('--epochs', type=int, default=20)
args.add_argument('--model', type=str,
choices=['densenet161', 'resnet101', 'inceptionv3', 'seresnext'],
default='densenet161')
args.add_argument('--input-size', type=int, default=224, help='size of input image')
args.add_argument('--num-classes', type=int, default=64, help='number of classes for batch sampler')
args.add_argument('--num-samples', type=int, default=4, help='number of samples per class for batch sampler')
args.add_argument('--embedding-dim', type=int, default=128, help='size of embedding dimension')
args.add_argument('--feature-extracting', type=bool, default=False)
args.add_argument('--use-pretrained', type=bool, default=True)
args.add_argument('--lr', type=float, default=1e-4)
args.add_argument('--scheduler', type=str, choices=['StepLR', 'MultiStepLR'])
args.add_argument('--attention', action='store_true')
args.add_argument('--loss-type', type=str, choices=MAIN_LOSS_CHOICES)
args.add_argument('--cross-entropy', action='store_true')
args.add_argument('--use-augmentation', action='store_true')
# Mode selection
args.add_argument('--mode', type=str, default='train', help='mode selection: train or test.')
return args.parse_args()
if __name__ == '__main__':
config = get_arguments()
dataset_path = config.dataset_path
# Model parameters
model_name = config.model
input_size = config.input_size
embedding_dim = config.embedding_dim
feature_extracting = config.feature_extracting
use_pretrained = config.use_pretrained
attention_flag = config.attention
# Training parameters
nb_epoch = config.epochs
loss_type = config.loss_type
cross_entropy_flag = config.cross_entropy
scheduler_name = config.scheduler
lr = config.lr
# Mini-batch parameters
num_classes = config.num_classes
num_samples = config.num_samples
use_augmentation = config.use_augmentation
infer_batch_size = 64
log_interval = 50
""" Model """
model = EmbeddingNetwork(model_name=model_name,
embedding_dim=embedding_dim,
feature_extracting=feature_extracting,
use_pretrained=use_pretrained,
attention_flag=attention_flag,
cross_entropy_flag=cross_entropy_flag)
if torch.cuda.device_count() > 1:
model = nn.DataParallel(model)
if config.mode == 'train':
""" Load data """
print('dataset path', dataset_path)
train_dataset_path = dataset_path + '/train/train_data'
img_dataset = train_data_loader(data_path=train_dataset_path, img_size=input_size,
use_augment=use_augmentation)
# Balanced batch sampler and online train loader
train_batch_sampler = BalancedBatchSampler(img_dataset, n_classes=num_classes, n_samples=num_samples)
online_train_loader = torch.utils.data.DataLoader(img_dataset,
batch_sampler=train_batch_sampler,
num_workers=4,
pin_memory=True)
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
# Gather the parameters to be optimized/updated.
params_to_update = model.parameters()
print("Params to learn:")
if feature_extracting:
params_to_update = []
for name, param in model.named_parameters():
if param.requires_grad:
params_to_update.append(param)
print("\t", name)
else:
for name, param in model.named_parameters():
if param.requires_grad:
print("\t", name)
# Send the model to GPU
model = model.to(device)
optimizer = optim.Adam(model.parameters(), lr=lr, weight_decay=1e-4)
if scheduler_name == 'StepLR':
scheduler = optim.lr_scheduler.StepLR(optimizer, step_size=8, gamma=0.1)
elif scheduler_name == 'MultiStepLR':
if use_augmentation:
scheduler = optim.lr_scheduler.MultiStepLR(optimizer, milestones=[20, 30], gamma=0.1)
else:
scheduler = optim.lr_scheduler.MultiStepLR(optimizer, milestones=[10, 15, 20], gamma=0.1)
else:
raise ValueError('Invalid scheduler')
# Loss function
loss_fn = BlendedLoss(loss_type, cross_entropy_flag)
# Train (fine-tune) model
fit(online_train_loader, model, loss_fn, optimizer, scheduler, nb_epoch,
device=device, log_interval=log_interval, save_model_to=config.model_save_dir)
elif config.mode == 'test':
test_dataset_path = dataset_path + '/test/test_data'
queries, db = test_data_loader(test_dataset_path)
model = load(file_path=config.model_to_test)
result_dict = infer(model, queries, db)