forked from vllm-project/vllm
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathreduction_utils.cuh
95 lines (79 loc) · 2.96 KB
/
reduction_utils.cuh
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
/*
* Adapted from
* https://github.com/NVIDIA/FasterTransformer/blob/release/v5.3_tag/src/fastertransformer/kernels/reduce_kernel_utils.cuh
* Copyright (c) 2023, The vLLM team.
* Copyright (c) 2020-2023, NVIDIA CORPORATION. All rights reserved.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#pragma once
#include "cuda_compat.h"
namespace vllm {
namespace detail {
template <typename T>
__inline__ __device__ T _max(T a, T b) {
return max(a, b);
}
template <typename T>
__inline__ __device__ T _sum(T a, T b) {
return a + b;
}
} // namespace detail
template <typename T>
using ReduceFnType = T (*)(T, T);
// Helper function to return the next largest power of 2
static constexpr int _nextPow2(unsigned int num) {
if (num <= 1) return num;
return 1 << (CHAR_BIT * sizeof(num) - __builtin_clz(num - 1));
}
template <typename T, int numLanes = WARP_SIZE>
__inline__ __device__ T warpReduce(T val, ReduceFnType<T> fn) {
static_assert(numLanes > 0 && (numLanes & (numLanes - 1)) == 0,
"numLanes is not a positive power of 2!");
static_assert(numLanes <= WARP_SIZE);
#pragma unroll
for (int mask = numLanes >> 1; mask > 0; mask >>= 1)
val = fn(val, VLLM_SHFL_XOR_SYNC(val, mask));
return val;
}
template <typename T, int maxBlockSize = 1024>
__inline__ __device__ T blockReduce(T val, ReduceFnType<T> fn) {
static_assert(maxBlockSize <= 1024);
if constexpr (maxBlockSize > WARP_SIZE) {
val = warpReduce<T>(val, fn);
// Calculates max number of lanes that need to participate in the last
// warpReduce
constexpr int maxActiveLanes = (maxBlockSize + WARP_SIZE - 1) / WARP_SIZE;
static __shared__ T shared[maxActiveLanes];
int lane = threadIdx.x % WARP_SIZE;
int wid = threadIdx.x / WARP_SIZE;
if (lane == 0) shared[wid] = val;
__syncthreads();
val = (threadIdx.x < blockDim.x / float(WARP_SIZE)) ? shared[lane]
: (T)(0.0f);
val = warpReduce<T, _nextPow2(maxActiveLanes)>(val, fn);
} else {
// A single warpReduce is equal to blockReduce
val = warpReduce<T, _nextPow2(maxBlockSize)>(val, fn);
}
return val;
}
template <typename T, int maxBlockSize = 1024>
__inline__ __device__ T blockReduceMax(T val) {
return blockReduce<T, maxBlockSize>(val, detail::_max<T>);
}
template <typename T, int maxBlockSize = 1024>
__inline__ __device__ T blockReduceSum(T val) {
return blockReduce<T, maxBlockSize>(val, detail::_sum<T>);
}
} // namespace vllm