-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathloss_test.py
66 lines (51 loc) · 2.2 KB
/
loss_test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
# Normalization test.
import flax
import jax
import numpy as np
import optax
from jax import numpy as jnp
import loss
from layers import Softmax, utils
np.random.seed(2024)
class MSELossTest(np.testing.TestCase):
def test_forward_and_backward(self):
shape = [128, 32]
y = utils.rand(shape=shape)
targets = utils.rand(shape=shape)
def _mse(y, targets):
return jnp.sum((y - targets)**2) / y.size
mse_loss = loss.MSELoss()
np.testing.assert_allclose(_mse(y, targets),
mse_loss(y, targets),
atol=1e-6)
np.testing.assert_allclose(
jax.grad(_mse)(y, targets), mse_loss(y, targets, backprop=True))
class CrossEntropyLossTest(np.testing.TestCase):
def test_forward_and_backward(self):
shape = [128, 32]
y = flax.linen.softmax(utils.rand(shape=shape))
targets = flax.linen.softmax(utils.rand(shape=shape))
def _cross_entropy(y, targets):
return -jnp.sum(targets * jnp.log(y))
ce_loss = loss.CrossEntropyLoss()
np.testing.assert_allclose(_cross_entropy(y, targets),
ce_loss(y, targets))
np.testing.assert_allclose(
jax.grad(_cross_entropy)(y, targets),
ce_loss(y, targets, backprop=True))
class SoftmaxCrossEntropyLossTest(np.testing.TestCase):
def test_forward_and_backward(self):
shape = [128, 32]
y = utils.rand(shape=shape)
targets = flax.linen.softmax(utils.rand(shape=shape))
def _softmax_cross_entropy(y, targets):
return jnp.sum(optax.softmax_cross_entropy(y, targets))
ce_loss = loss.CrossEntropyLoss()
softmax = Softmax()
np.testing.assert_allclose(_softmax_cross_entropy(y, targets),
ce_loss(softmax(y), targets))
np.testing.assert_allclose(jax.grad(_softmax_cross_entropy)(y,
targets),
softmax(ce_loss(y, targets, backprop=True),
backprop=True),
atol=1e-6)