forked from eriklindernoren/ML-From-Scratch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrestricted_boltzmann_machine.py
82 lines (66 loc) · 3.28 KB
/
restricted_boltzmann_machine.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
import logging
import numpy as np
import progressbar
from mlfromscratch.utils.misc import bar_widgets
from mlfromscratch.utils import batch_iterator
from mlfromscratch.deep_learning.activation_functions import Sigmoid
sigmoid = Sigmoid()
class RBM():
"""Bernoulli Restricted Boltzmann Machine (RBM)
Parameters:
-----------
n_hidden: int:
The number of processing nodes (neurons) in the hidden layer.
learning_rate: float
The step length that will be used when updating the weights.
batch_size: int
The size of the mini-batch used to calculate each weight update.
n_iterations: float
The number of training iterations the algorithm will tune the weights for.
Reference:
A Practical Guide to Training Restricted Boltzmann Machines
URL: https://www.cs.toronto.edu/~hinton/absps/guideTR.pdf
"""
def __init__(self, n_hidden=128, learning_rate=0.1, batch_size=10, n_iterations=100):
self.n_iterations = n_iterations
self.batch_size = batch_size
self.lr = learning_rate
self.n_hidden = n_hidden
self.progressbar = progressbar.ProgressBar(widgets=bar_widgets)
def _initialize_weights(self, X):
n_visible = X.shape[1]
self.W = np.random.normal(scale=0.1, size=(n_visible, self.n_hidden))
self.v0 = np.zeros(n_visible) # Bias visible
self.h0 = np.zeros(self.n_hidden) # Bias hidden
def fit(self, X, y=None):
'''Contrastive Divergence training procedure'''
self._initialize_weights(X)
self.training_errors = []
self.training_reconstructions = []
for _ in self.progressbar(range(self.n_iterations)):
batch_errors = []
for batch in batch_iterator(X, batch_size=self.batch_size):
# Positive phase
positive_hidden = sigmoid(batch.dot(self.W) + self.h0)
hidden_states = self._sample(positive_hidden)
positive_associations = batch.T.dot(positive_hidden)
# Negative phase
negative_visible = sigmoid(hidden_states.dot(self.W.T) + self.v0)
negative_visible = self._sample(negative_visible)
negative_hidden = sigmoid(negative_visible.dot(self.W) + self.h0)
negative_associations = negative_visible.T.dot(negative_hidden)
self.W += self.lr * (positive_associations - negative_associations)
self.h0 += self.lr * (positive_hidden.sum(axis=0) - negative_hidden.sum(axis=0))
self.v0 += self.lr * (batch.sum(axis=0) - negative_visible.sum(axis=0))
batch_errors.append(np.mean((batch - negative_visible) ** 2))
self.training_errors.append(np.mean(batch_errors))
# Reconstruct a batch of images from the training set
idx = np.random.choice(range(X.shape[0]), self.batch_size)
self.training_reconstructions.append(self.reconstruct(X[idx]))
def _sample(self, X):
return X > np.random.random_sample(size=X.shape)
def reconstruct(self, X):
positive_hidden = sigmoid(X.dot(self.W) + self.h0)
hidden_states = self._sample(positive_hidden)
negative_visible = sigmoid(hidden_states.dot(self.W.T) + self.v0)
return negative_visible