-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathViewer_engagement_YouTube_script.R
476 lines (363 loc) · 15 KB
/
Viewer_engagement_YouTube_script.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
##--------------------------------------------------------------------------------------------------##
## VIEWER ENGAGEMENT ON YOUTUBE: MINING DATA ON THE FLORIDA HIGH SCHOOL SHOOTING ##
##--------------------------------------------------------------------------------------------------##
## R version 3.4.3 (2017-11-30)
## Authors: Lisa Hehnke (dataplanes.org | @DataPlanes) & Josef Holnburger (holnburger.com | @holnburger)
#-------#
# Setup #
#-------#
# Install and load packages using pacman
if (!require("pacman")) install.packages("pacman")
library(pacman)
p_load(lubridate, reshape2, RMySQL, rvest, tidyverse, tidytext, urltools, wordcloud, xml2)
#-------------------------#
# Connect to SQL database #
#-------------------------#
con <- dbConnect(MySQL(), user = "[INSERT USER HERE]", password = "[INSERT PASSWORD HERE]", dbname = "[INSERT NAME HERE]", host = "[INSERT HOST HERE]")
sqlsetutf8 <- dbGetQuery(con, "SET NAMES utf8mb4")
#---------------#
# Download data #
#---------------#
query <- dbSendQuery(con, "SELECT * FROM Videos")
videos <- dbFetch(query, n = -1)
query <- dbSendQuery(con, "SELECT * FROM Comments")
comments <- dbFetch(query, n = -1)
#--------------------------#
# Theme for visualizations #
#--------------------------#
viz_theme <- theme(
strip.background = element_rect(colour = "transparent", fill = "grey90"),
axis.line = element_line(colour = "black"),
panel.grid.major = element_blank(),
panel.grid.minor = element_blank(),
panel.border = element_blank(),
panel.background = element_blank(),
legend.key = element_rect(fill = "white"),
strip.text = element_text(size = rel(1), face = "bold"),
plot.caption = element_text(colour = "grey50"),
text = element_text(family = "Avenir"))
#----------------#
# Data wrangling #
#----------------#
# Search terms for shooting-related videos
shootingTerms <- "florida|high school|shooting|nra"
# Clean video data
videos <- videos %>%
select(videoId, publishedAt, channelId, channelTitle, title, description, viewCount, likeCount, dislikeCount, commentCount, liveBroadcastContent) %>%
mutate(datePublished = as.Date(publishedAt)) %>%
mutate(freqLikes = likeCount/(likeCount+dislikeCount)) %>%
mutate(freqDislikes = dislikeCount/(likeCount+dislikeCount)) %>%
arrange(desc(viewCount)) %>%
mutate(aboutShooting = case_when(
str_detect(tolower(description), shootingTerms) == TRUE |
str_detect(tolower(title), shootingTerms) == TRUE ~ "TRUE",
str_detect(tolower(description), shootingTerms) == FALSE |
str_detect(title, shootingTerms) == FALSE ~ "FALSE"))
# Change channel title
videos$channelTitle[videos$channelTitle == "The Alex Jones Channel"] <- "Alex Jones"
# Add function
"%notin%" <- Negate("%in%")
#-------#
# Stats #
#-------#
# Video summary
videos_summary <- videos %>%
group_by(channelTitle, aboutShooting) %>%
summarise(Videos = n(), meanViews = mean(viewCount), meanFreqLikes = mean(freqLikes), meanFreqDislikes = mean(freqDislikes))
# Get total number of comments by authorChannelId
users <- comments %>%
group_by(authorChannelId) %>%
summarise(comments = n()) %>%
arrange(desc(comments))
# Get number of comments on shooting-related videos by authorChannelId
users_shooting <- comments %>%
left_join(videos %>% select(videoId, aboutShooting), by = "videoId") %>%
filter(aboutShooting == TRUE) %>%
group_by(authorChannelId) %>%
summarise(comments = n()) %>%
arrange(desc(comments))
# List of shooting-related videos
videos_shooting <- videos %>%
filter(aboutShooting == TRUE)
#-------#
# Plots #
#-------#
# Number of shooting-related videos over time by channel
videos %>%
filter(aboutShooting == TRUE) %>%
ggplot(aes(x = datePublished, colour = channelTitle)) + geom_freqpoly(bins = "14") +
viz_theme
# Number of shooting-related videos compared to the rest of the videos
videos_summary %>%
ggplot(aes(channelTitle, Videos)) +
geom_bar(aes(fill = aboutShooting), position = "dodge", stat = "identity") +
theme(axis.title.x = element_blank()) +
ggtitle("Number of shooting-related vs. other videos", subtitle = "") + labs(fill = "Shooting-related") +
scale_fill_discrete(labels = c("No", "Yes")) +
theme(text = element_text(size = 20)) +
viz_theme
ggsave("plot_videos.png", width = 12, height = 12, units = "in", dpi = 100)
# Views of shooting-related videos
p <- videos %>%
filter(aboutShooting == TRUE) %>%
ggplot(aes(channelTitle, viewCount, fill = channelTitle)) + geom_boxplot() +
theme(axis.title.x = element_blank(), legend.position = "NONE") +
ggtitle("Views of shooting-related videos by channel", subtitle = "") + ylab("Views") +
viz_theme
require(scales)
p + scale_y_continuous(labels = comma)
# Views of shooting-related vs. other videos by channel
p_cat <- videos %>%
ggplot(aes(channelTitle, viewCount, fill = channelTitle)) + geom_boxplot() +
theme(axis.title.x = element_blank(), legend.position = "NONE") +
ggtitle("Number of video views by channel", subtitle = "") +
facet_wrap(~aboutShooting, labeller = as_labeller(c("FALSE" = "Not shooting-related", "TRUE" = "Shooting-related"))) + ylab("Views") +
theme(text = element_text(size = 20)) +
viz_theme
require(scales)
p_cat + scale_y_continuous(labels = comma)
ggsave("plot_views.png", width = 14, height = 10, units = "in", dpi = 100)
# Overall percentage of likes by channel
videos %>%
ggplot(aes(channelTitle, freqLikes, fill = channelTitle)) + geom_boxplot() +
theme(axis.title.x = element_blank(), legend.position = "NONE") +
ggtitle("Percentage of likes by channel", subtitle = "") + ylab("% Likes") +
viz_theme
# Percentage of likes on shooting-related vs. other videos by channel
videos %>%
ggplot(aes(channelTitle, freqLikes, fill = channelTitle)) + geom_boxplot() +
theme(axis.title.x = element_blank(), legend.position = "NONE") +
ggtitle("Percentage of likes by channel", subtitle = "") +
facet_wrap(~aboutShooting, labeller = as_labeller(c("FALSE" = "Not shooting-related", "TRUE" = "Shooting-related"))) + ylab("% Likes") +
theme(text = element_text(size = 20)) +
viz_theme
ggsave("plot_likes.png", width = 14, height = 10, units = "in", dpi = 100)
#-----------------#
# Text processing #
#-----------------#
# Encode HTML characters and remove them
## Thanks to Jeroen (https://stackoverflow.com/questions/5060076/convert-html-character-entity-encoding-in-r).
unescape_html <- function(str){
xml2::xml_text(xml2::read_html(paste0("<x>", str, "</x>")))
}
comments$text_clean <- lapply(comments$text, unescape_html)
# Remove URLs
url_pattern <- "http[s]?://(?:[a-zA-Z]|[0-9]|[$-_@.&+]|[!*\\(\\),]|(?:%[0-9a-fA-F][0-9a-fA-F]))+"
www_pattern <- "www\\S+\\s*"
comments %<>%
mutate(text_clean = stringr::str_replace_all(text_clean, url_pattern, "")) %>%
mutate(text_clean = stringr::str_replace_all(text_clean, www_pattern, ""))
# Remove emojis
comments$text_clean <- iconv(comments$text_clean, to = "UTF-8-MAC", sub = "byte")
# Convert to lowercase
comments$text_clean <- tolower(comments$text_clean)
# Remove punctuation and numbers
comments$text_clean <- gsub("[^[:alpha:][:blank:]]", "", comments$text_clean)
# Merge data
comments_shooting <- comments %>%
left_join(videos %>% select(videoId, channelTitle, aboutShooting), by = "videoId") %>%
filter(aboutShooting == TRUE)
# Sample comments
set.seed(42)
comments_sample <- comments_shooting %>%
group_by(channelTitle) %>%
sample_n(1000)
# Unnest and tokenize text and remove stop words
comments_sample_tidy <- comments_sample %>%
unnest_tokens(word, text_clean) %>%
anti_join(stop_words)
#--------------------#
# Comments over time #
#--------------------#
# Count comments by date
comments_ts <- comments_shooting %>%
group_by(channelTitle) %>%
dplyr::count(date = as.Date(publishedAt))
# Plot timeline
ggplot(comments_ts, aes(date, n)) +
geom_line(col = "red", size = 1) +
facet_wrap(~channelTitle, scales = "free_y", ncol = 3) +
labs(x = "Date", y = "Count", title = "Number of YouTube comments over time", subtitle = " ") +
scale_x_date(date_breaks = "1 day", date_labels = "%b %d") +
theme(text = element_text(size = 20)) +
viz_theme + ylim(0, 100000) + theme(axis.text.x = element_text(angle = 65, vjust = 0.5))
ggsave("plot_timeline.png", width = 12, height = 8, units = "in", dpi = 100)
#-----------------#
# Views over time #
#-----------------#
# Views per date (without CNN)
views_ts <- videos %>%
group_by(channelTitle) %>%
filter(channelTitle != "CNN") %>%
filter(aboutShooting == TRUE) %>%
dplyr::count(date = as.Date(publishedAt))
# Plot timeline
ggplot(views_ts, aes(date, n)) +
geom_line(col = "red", size = 1) +
facet_wrap(~channelTitle, scales = "free_y", ncol = 2) +
labs(x = "Date", y = "Count", title = "Views of YouTube videos over time", subtitle = " ") +
scale_x_date(date_breaks = "1 day", date_labels = "%b %d") +
theme(text = element_text(size = 20)) +
viz_theme + theme(axis.text.x = element_text(angle = 65, vjust = 0.5))
#------------------#
# Word frequencies #
#------------------#
comments_tidy <- comments_shooting %>%
unnest_tokens(word, text_clean) %>%
anti_join(stop_words)
comments_wordfreq <- comments_tidy %>%
dplyr::count(word, sort = TRUE)
# Plot words
comments_tidy %>%
group_by(channelTitle) %>%
dplyr::count(word, sort = TRUE) %>%
top_n(6, n) %>%
ungroup() %>%
mutate(word = reorder(word, n)) %>%
ggplot(aes(word, n)) +
geom_col() +
facet_wrap(~channelTitle, scales = "free_y", ncol = 3) +
theme(text = element_text(size = 25)) +
xlab("") + ylab("") + ggtitle("Most common words in YouTube comments", subtitle = " ") + theme(axis.text.x = element_text(angle = 65, vjust = 0.5)) +
coord_flip() + viz_theme
ggsave("plot_words.png", width = 12, height = 8, units = "in", dpi = 100)
# Wordcloud
comments_tidy %>%
count(word) %>%
with(wordcloud(word, n, max.words = 100, random.order = FALSE))
#------------------#
# Comparison cloud #
#------------------#
comments_tidy %>%
filter(channelTitle == "Alex Jones") %>%
count(word) %>%
with(wordcloud(word, n, max.words = 100, random.order = FALSE))
comments_sample_tidy %>%
count(word, channelTitle, sort = TRUE) %>%
acast(word ~ channelTitle, value.var = "n", fill = 0) %>%
comparison.cloud(max.words = 200, random.order = FALSE, title.size = 1.4)
#--------------------#
# Sentiment analysis #
#--------------------#
# Remove trump
senti_rm <- c("trump")
# Calculate and plot total sentiment scores (nrc)
comments_sample_tidy %>%
filter(word %notin% senti_rm) %>%
group_by(channelTitle) %>%
inner_join(get_sentiments("nrc")) %>%
count(word, sentiment) %>%
ggplot(aes(sentiment, n)) +
geom_bar(aes(fill = sentiment), stat = "identity") +
facet_wrap(~channelTitle, scales = "free_y", ncol = 2) +
theme(text = element_text(size = 30), axis.text.x = element_text(angle = 65, vjust = 0.5)) +
xlab("") + ylab("") + ggtitle("Total sentiment scores in YouTube comments (nrc)", subtitle = " ") +
ylim(0, 2500) + theme(legend.position = "none") + viz_theme
ggsave("plot_sentiments.png", width = 12, height = 8, units = "in", dpi = 100)
#----------------------#
# Sentiments over time #
#----------------------#
comments_tidy$publishedAt <- ymd_hms(comments_tidy$publishedAt)
# Calculate and plot sentiment scores (nrc) over time
comments_sent_ts <- comments_tidy %>%
filter(word %notin% senti_rm) %>%
group_by(channelTitle) %>%
inner_join(get_sentiments("nrc")) %>%
dplyr::count(Date = as.Date(publishedAt), sentiment)
ggplot(comments_sent_ts, aes(Date, n, group = sentiment)) +
geom_line(size = 1, alpha = 0.7, aes(color = sentiment)) +
facet_wrap(~channelTitle, scales = "free_y", ncol = 2) +
theme(text = element_text(size = 30), axis.text.x = element_text(angle = 65, vjust = 0.5)) +
scale_x_date(date_breaks = "1 day", date_labels = "%b %d") +
xlab("") + ylab("") + ggtitle("Total sentiment scores in YouTube comments", subtitle = " ") +
ylim(0, 30000) + viz_theme
ggsave("plot_sentiments_timeline.png", width = 12, height = 8, units = "in", dpi = 100)
#-------------------------#
# Positive/negative words #
#-------------------------#
# Calculate positive and negative sentiments (bing)
bing_counts <- comments_tidy %>%
filter(word %notin% senti_rm) %>%
group_by(channelTitle) %>%
inner_join(get_sentiments("bing")) %>%
count(word, sentiment, sort = TRUE) %>%
ungroup()
# Calculate top word contributors
bing_counts_plot <- bing_counts %>%
group_by(channelTitle, sentiment) %>%
top_n(10) %>%
ungroup() %>%
mutate(word = reorder(word, n))
# Plot most common positive and negative words
ggplot(bing_counts_plot, aes(word, n, fill = sentiment)) +
geom_col(show.legend = FALSE) +
facet_wrap(~sentiment, scales = "free_y") +
xlab("") + ylab("") +
theme(text = element_text(size = 30)) +
ggtitle("Most common +/- words in YouTube comments", subtitle = " ") +
coord_flip() + viz_theme
ggsave("plot_pos_neg_words.png", width = 12, height = 8, units = "in", dpi = 100)
#---------------------#
# Most liked comments #
#---------------------#
# Get most active commenters
most_active <- comments_shooting %>%
group_by(authorChannelId) %>%
tally() %>%
arrange(-n, authorChannelId)
# Get most active commenters: same text
most_active_text <- comments_shooting %>%
group_by(authorChannelId) %>%
dplyr::count(text_clean, sort = TRUE)
#---------------------#
# Most liked comments #
#---------------------#
# Get most liked comments
most_liked <- comments_shooting %>%
group_by(channelTitle) %>%
top_n(100, likeCount) %>%
arrange(channelTitle, -likeCount)
# Tokenize text and remove stop words
most_liked_tidy <- most_liked %>%
unnest_tokens(word, text_clean) %>%
anti_join(stop_words) %>%
filter(word %notin% words_rm)
#--------------------------------#
# Scrape profanity list from web #
#--------------------------------#
# Create URL for each letter
letters <- paste(letters)
urls <- paste0("https://www.noswearing.com/dictionary/", letters)
# Function for scraping tables
get_words <- function(url) {
url %>%
read_html() %>%
html_nodes("td") %>%
html_nodes("a") %>%
html_attr("name") %>%
na.omit()
}
# Get tables and convert to data frame
profanity <- unlist(lapply(urls, get_words))
# Clean words
profanity <- gsub("\\\\'.*", "", profanity)
#----------------#
# Comment length #
#----------------#
## Idea adapted from: https://www.curiousgnu.com/youtube-comments-text-analysis
# Count words per comment
comments_sample$number_words <- vapply(strsplit(comments_sample$text, "\\W+"), length, integer(1))
#-----------------#
# Comment quality #
#-----------------#
# Count number of profane words
comments_sample$number_prof <- str_count(comments_sample$text, paste0(c("\\b("), paste(profanity, collapse = "|"), c(")\\b")))
# Get profanities to words rate
comments_sample$prof_rate <- (comments_sample$number_prof / comments_sample$number_words) * 100
# View profanity rate by category
ggplot(comments_sample, aes(prof_rate, colour = channel)) +
geom_freqpoly(bins = 100) +
labs(x = "Rate", y = "Count", title = "Profanity rate for YouTube comments", subtitle = "Profanities to words rate",
colour = "Channel") +
theme(text = element_text(size = 20)) +
viz_theme